enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematics of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_cyclic...

    The cyclic redundancy check (CRC) is a check of the remainder after division in the ring of polynomials over GF (2) (the finite field of integers modulo 2). That is, the set of polynomials where each coefficient is either zero or one, and arithmetic operations wrap around. Any string of bits can be interpreted as the coefficients of a ...

  3. Computation of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Computation_of_cyclic...

    Computation of cyclic redundancy checks. Computation of a cyclic redundancy check is derived from the mathematics of polynomial division, modulo two. In practice, it resembles long division of the binary message string, with a fixed number of zeroes appended, by the "generator polynomial" string except that exclusive or operations replace ...

  4. Cyclic redundancy check - Wikipedia

    en.wikipedia.org/wiki/Cyclic_redundancy_check

    A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to digital data. [1][2] Blocks of data entering these systems get a short check value attached, based on the remainder of a polynomial division of their contents. On retrieval, the calculation is repeated ...

  5. Fletcher's checksum - Wikipedia

    en.wikipedia.org/wiki/Fletcher's_checksum

    Usually, the second sum will be multiplied by 2 16 and added to the simple checksum, effectively stacking the sums side-by-side in a 32-bit word with the simple checksum at the least significant end. This algorithm is then called the Fletcher-32 checksum. The use of the modulus 2 16 − 1 = 65,535 is also generally implied. The rationale for ...

  6. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In mathematics, the result of the modulo operation is an equivalence class, and any member of the class may be chosen as representative; however, the usual representative is the least positive residue, the smallest non-negative integer that belongs to that class (i.e., the remainder of the Euclidean division). [2]

  7. Hash function - Wikipedia

    en.wikipedia.org/wiki/Hash_function

    The remainder using polynomial arithmetic modulo 2 is K(x) mod Z(x) = h m−1 x m−1 + ⋯ h 1 x + h 0. Then h(K) = (h m−1 …h 1 h 0) 2. If Z(x) is constructed to have t or fewer non-zero coefficients, then keys which share fewer than t bits are guaranteed to not collide.

  8. Quotient group - Wikipedia

    en.wikipedia.org/wiki/Quotient_group

    The quotient group is isomorphic to the circle group, the group of complex numbers of absolute value 1 under multiplication, or correspondingly, the group of rotations in 2D about the origin, that is, the special orthogonal group ⁠ ⁠. An isomorphism is given by (see Euler's identity).

  9. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.