Search results
Results from the WOW.Com Content Network
A general-purpose factoring algorithm, also known as a Category 2, Second Category, or Kraitchik family algorithm, [10] has a running time which depends solely on the size of the integer to be factored. This is the type of algorithm used to factor RSA numbers. Most general-purpose factoring algorithms are based on the congruence of squares method.
In mathematics and computer algebra, factorization of polynomials or polynomial factorization expresses a polynomial with coefficients in a given field or in the integers as the product of irreducible factors with coefficients in the same domain. Polynomial factorization is one of the fundamental components of computer algebra systems.
In number theory, the general number field sieve (GNFS) is the most efficient classical algorithm known for factoring integers larger than 10100. Heuristically, its complexity for factoring an integer n (consisting of ⌊log2 n⌋ + 1 bits) is of the form. in O and L-notations. [1] It is a generalization of the special number field sieve: while ...
Decomposition paradigm. A decomposition paradigm in computer programming is a strategy for organizing a program as a number of parts, and usually implies a specific way to organize a program text. Typically the aim of using a decomposition paradigm is to optimize some metric related to program complexity, for example a program's modularity or ...
On a quantum computer, to factor an integer , Shor's algorithm runs in polynomial time, meaning the time taken is polynomial in . [6] It takes quantum gates of order using fast multiplication, [7] or even utilizing the asymptotically fastest multiplication algorithm currently known due to Harvey and Van Der Hoven, [8] thus demonstrating that ...
Moreover, this factorization is unique up to the order of the factors and the signs of the factors. There are efficient algorithms for computing this factorization, which are implemented in most computer algebra systems. See Factorization of polynomials. Unfortunately, these algorithms are too complicated to use for paper-and-pencil computations.
Quadratic sieve. The quadratic sieve algorithm (QS) is an integer factorization algorithm and, in practice, the second-fastest method known (after the general number field sieve). It is still the fastest for integers under 100 decimal digits or so, and is considerably simpler than the number field sieve. It is a general-purpose factorization ...
Square-free factorization. The algorithm determines a square-free factorization for polynomials whose coefficients come from the finite field Fq of order q = pm with p a prime. This algorithm firstly determines the derivative and then computes the gcd of the polynomial and its derivative. If it is not one then the gcd is again divided into the ...