enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bell number - Wikipedia

    en.wikipedia.org/wiki/Bell_number

    The triangular array whose right-hand diagonal sequence consists of Bell numbers. The Bell numbers can easily be calculated by creating the so-called Bell triangle, also called Aitken's array or the Peirce triangle after Alexander Aitken and Charles Sanders Peirce. [ 6 ] Start with the number one.

  3. Pell number - Wikipedia

    en.wikipedia.org/wiki/Pell_number

    In words: the first two numbers in the sequence are both 2, and each successive number is formed by adding twice the previous Pell–Lucas number to the Pell–Lucas number before that, or equivalently, by adding the next Pell number to the previous Pell number: thus, 82 is the companion to 29, and 82 = 2 × 34 + 14 = 70 + 12.

  4. Bell polynomials - Wikipedia

    en.wikipedia.org/wiki/Bell_polynomials

    Bell polynomials. In combinatorial mathematics, the Bell polynomials, named in honor of Eric Temple Bell, are used in the study of set partitions. They are related to Stirling and Bell numbers. They also occur in many applications, such as in Faà di Bruno's formula.

  5. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Time-keeping on this clock uses arithmetic modulo 12. Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed ...

  6. Stirling numbers of the second kind - Wikipedia

    en.wikipedia.org/wiki/Stirling_numbers_of_the...

    In mathematics, particularly in combinatorics, a Stirling number of the second kind (or Stirling partition number) is the number of ways to partition a set of n objects into k non-empty subsets and is denoted by or . [1] Stirling numbers of the second kind occur in the field of mathematics called combinatorics and the study of partitions.

  7. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]

  8. Partition of a set - Wikipedia

    en.wikipedia.org/wiki/Partition_of_a_set

    The total number of partitions of an n-element set is the Bell number B n. The first several Bell numbers are B 0 = 1, B 1 = 1, B 2 = 2, B 3 = 5, B 4 = 15, B 5 = 52, and B 6 = 203 (sequence A000110 in the OEIS). Bell numbers satisfy the recursion + = = and have the exponential generating function

  9. Pisano period - Wikipedia

    en.wikipedia.org/wiki/Pisano_period

    The Pisano period, denoted π (n), is the length of the period of this sequence. For example, the sequence of Fibonacci numbers modulo 3 begins: This sequence has period 8, so π (3) = 8. For n = 3, this is a visualization of the Pisano period in the two-dimensional state space of the recurrence relation.