enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Perceptrons (book) - Wikipedia

    en.wikipedia.org/wiki/Perceptrons_(book)

    The perceptron is a neural net developed by psychologist Frank Rosenblatt in 1958 and is one of the most famous machines of its period. [11] [12] In 1960, Rosenblatt and colleagues were able to show that the perceptron could in finitely many training cycles learn any task that its parameters could embody.

  3. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    Below is an example of a learning algorithm for a single-layer perceptron with a single output unit. For a single-layer perceptron with multiple output units, since the weights of one output unit are completely separate from all the others', the same algorithm can be run for each output unit.

  4. AND gate - Wikipedia

    en.wikipedia.org/wiki/AND_gate

    The AND gate is a basic digital logic gate that implements the logical conjunction (∧) from mathematical logic – AND gates behave according to their truth table. A HIGH output (1) results only if all the inputs to the AND gate are HIGH (1). If all of the inputs to the AND gate are not HIGH, a LOW (0) is outputted.

  5. Kernel perceptron - Wikipedia

    en.wikipedia.org/wiki/Kernel_perceptron

    In machine learning, the kernel perceptron is a variant of the popular perceptron learning algorithm that can learn kernel machines, i.e. non-linear classifiers that employ a kernel function to compute the similarity of unseen samples to training samples. The algorithm was invented in 1964, [1] making it the first kernel classification learner. [2]

  6. File:Think Python.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Think_Python.pdf

    This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made ...

  7. Learning rule - Wikipedia

    en.wikipedia.org/wiki/Learning_rule

    Similar to the perceptron learning rule but with different origin. It was developed for use in the ADALAINE network, which differs from the Perceptron mainly in terms of the training. The weights are adjusted according to the weighted sum of the inputs (the net), whereas in perceptron the sign of the weighted sum was useful for determining the ...

  8. Mark I Perceptron - Wikipedia

    en.wikipedia.org/wiki/Mark_I_Perceptron

    The Mark I Perceptron was a pioneering supervised image classification learning system developed by Frank Rosenblatt in 1958. It was the first implementation of an Artificial Intelligence (AI) machine.

  9. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    The perceptron uses the Heaviside step function as the activation function (), and that means that ′ does not exist at zero, and is equal to zero elsewhere, which makes the direct application of the delta rule impossible.