enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Single-linkage clustering - Wikipedia

    en.wikipedia.org/wiki/Single-linkage_clustering

    However, in single linkage clustering, the order in which clusters are formed is important, while for minimum spanning trees what matters is the set of pairs of points that form distances chosen by the algorithm. Alternative linkage schemes include complete linkage clustering, average linkage clustering (UPGMA and WPGMA), and Ward's method. In ...

  3. Complete-linkage clustering - Wikipedia

    en.wikipedia.org/wiki/Complete-linkage_clustering

    Alternative linkage schemes include single linkage clustering and average linkage clustering - implementing a different linkage in the naive algorithm is simply a matter of using a different formula to calculate inter-cluster distances in the initial computation of the proximity matrix and in step 4 of the above algorithm. An optimally ...

  4. WPGMA - Wikipedia

    en.wikipedia.org/wiki/WPGMA

    Alternative linkage schemes include single linkage clustering, complete linkage clustering, and UPGMA average linkage clustering. Implementing a different linkage is simply a matter of using a different formula to calculate inter-cluster distances during the distance matrix update steps of the above algorithm.

  5. Complete linkage - Wikipedia

    en.wikipedia.org/wiki/Complete_linkage

    In complete-linkage Hierarchical Clustering, this process of combining data points into clusters of increasing size is repeated until all date as part of a single cluster. [6] The resulting diagram from a Hierarchical Cluster Analysis is called a dendrogram, in which data are nested into brackets of increasing dissimilarity. Two common issues ...

  6. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri

  7. Nearest-neighbor chain algorithm - Wikipedia

    en.wikipedia.org/wiki/Nearest-neighbor_chain...

    As with complete linkage and average distance, the difficulty of calculating cluster distances causes the nearest-neighbor chain algorithm to take time and space O(n 2) to compute the single-linkage clustering. However, the single-linkage clustering can be found more efficiently by an alternative algorithm that computes the minimum spanning ...

  8. Weighted correlation network analysis - Wikipedia

    en.wikipedia.org/wiki/Weighted_correlation...

    This proximity is used as input of average linkage hierarchical clustering. Modules are defined as branches of the resulting cluster tree using the dynamic branch cutting approach. [ 11 ] Next the genes inside a given module are summarized with the module eigengene , which can be considered as the best summary of the standardized module ...

  9. Ward's method - Wikipedia

    en.wikipedia.org/wiki/Ward's_method

    Ward's minimum variance method can be defined and implemented recursively by a Lance–Williams algorithm. The Lance–Williams algorithms are an infinite family of agglomerative hierarchical clustering algorithms which are represented by a recursive formula for updating cluster distances at each step (each time a pair of clusters is merged).