Search results
Results from the WOW.Com Content Network
The assumption of nucleus as a drop of Fermi liquid is still widely used in the form of Finite Range Droplet Model (FRDM), due to the possible good reproduction of nuclear binding energy on the whole chart, with the necessary accuracy for predictions of unknown nuclei. [6]
A chart or table of nuclides maps the nuclear, or radioactive, behavior of nuclides, as it distinguishes the isotopes of an element.It contrasts with a periodic table, which only maps their chemical behavior, since isotopes (nuclides that are variants of the same element) do not differ chemically to any significant degree, with the exception of hydrogen.
Almost all of the mass of an atom is located in the nucleus, with a very small contribution from the electron cloud. Protons and neutrons are bound together to form a nucleus by the nuclear force. The diameter of the nucleus is in the range of 1.70 fm (1.70 × 10 −15 m [7]) for hydrogen (the diameter of a single proton) to about 11.7 fm for ...
The binding energy is subtracted from the sum of the proton and neutron masses because the mass of the nucleus is less than that sum. This property, called the mass defect, is necessary for a stable nucleus; within a nucleus, the nuclides are trapped by a potential well. A semi-empirical mass formula states that the binding energy will take the ...
Each chemical element has a unique atomic number (Z— for "Zahl", German for "number") representing the number of protons in its nucleus. [4] Each distinct atomic number therefore corresponds to a class of atom: these classes are called the chemical elements. [5] The chemical elements are what the periodic table classifies and organizes.
Chart of half-lives of known nuclides. The composition of a nuclide (atomic nucleus) is defined by the number of protons Z and the number of neutrons N, which sum to mass number A. Proton number Z, also named the atomic number, determines the position of an element in the periodic table.
A nuclide is a species of an atom with a specific number of protons and neutrons in the nucleus, for example carbon-13 with 6 protons and 7 neutrons. The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, while the isotope concept (grouping all atoms of each element) emphasizes ...
Since a nucleus with an odd number of protons is relatively less stable, odd-numbered elements tend to have fewer stable isotopes. Of the 26 "monoisotopic" elements that have only a single stable isotope, all but one have an odd atomic number—the single exception being beryllium. In addition, no odd-numbered element has more than two stable ...