Search results
Results from the WOW.Com Content Network
mass "The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 15 × 10 −34 when expressed in the unit J s, which is equal to kg m 2 s −1, where the metre and the second are defined in terms of c and ∆ν Cs." [1] The mass of one litre of water at the ...
Heat capacity per unit mass J/(K⋅kg) L 2 T −2 Θ −1: intensive Specific volume: v: Volume per unit mass (reciprocal of density) m 3 ⋅kg −1: L 3 M −1: intensive Spin: S: Quantum-mechanically defined angular momentum of a particle kg⋅m 2 ⋅s −1: L 2 M T −1: Strain: ε: Extension per unit length unitless 1: Stress: σ: Force per ...
In SI base units In other SI units SI: Physics: Basic: second [n 1] s: T: time: The duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom. s: SI: Physics: Basic: metre: m: L: length: The distance travelled by light in vacuum in 1 / 299 ...
Toggle the table of contents. List of gases. ... This is a list of gases at standard conditions, ... Si 2 H 6: −14.8 −129.4 62
Quantities, Units and Symbols in Physical Chemistry, also known as the Green Book, is a compilation of terms and symbols widely used in the field of physical chemistry. It also includes a table of physical constants , tables listing the properties of elementary particles , chemical elements , and nuclides , and information about conversion ...
SI unit; Name Symbol Dimension symbol Unit name Unit symbol time, duration: t: T second: s length: l, x, r, etc. L metre: m mass: m: M ... SI base quantities/table ...
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...
For example, the coherent derived SI unit of velocity is the metre per second, with the symbol m/s. [1]: 139 The base and coherent derived units of the SI together form a coherent system of units (the set of coherent SI units). A useful property of a coherent system is that when the numerical values of physical quantities are expressed in terms ...