Search results
Results from the WOW.Com Content Network
Tetramethylammonium hydroxide (TMAH) presents a safer alternative than EDP, with a 37X selectivity between {100} and {111} planes in silicon. Etching a (100) silicon surface through a rectangular hole in a masking material, like a hole in a layer of silicon nitride, creates a pit with flat sloping {111}-oriented sidewalls and a flat (100 ...
In case of (100) silicon etching rates generally increase with temperature and decrease with TMAH concentration. Etched (100) silicon surface roughness decreases with increasing TMAH concentration, and smooth surfaces can be obtained with 20% TMAH solutions. Etch rates are typically in the 0.1–1 micrometer per minute range.
Bulk micromachining starts with a silicon wafer or other substrates which is selectively etched, using photolithography to transfer a pattern from a mask to the surface. Like surface micromachining, bulk micromachining can be performed with wet or dry etches, although the most common etch in silicon is the anisotropic wet etch.
Briefly, the etching of silicon is a two-step process. First, the top surface of the silicon is converted into a soluble oxide by a suitable oxidizing agent(s). Then the resulting oxide layer is removed from the surface by dissolution in a suitable solvent, usually HF. This is a continuous process during the etch cycle.
The general etch reaction is summarized by the following equation. 2 XeF 2 + Si → SiF 4 + 2 Xe. The detailed etch kinetic is more complex reaction consisting of four steps. [15] [16] After the etchant has been mass transported to the silicon surface, the xenon difluoride is absorbed on the silicon surface. 2 XeF 2 (gas) + Si (s) → 2 XeF 2 ...
Micro-machining starts with a silicon wafer or other substrate upon which new layers are grown. These layers are selectively etched by photo-lithography; either a wet etch involving an acid, or a dry etch involving an ionized gas (or plasma). Dry etching can combine chemical etching with physical etching or ion bombardment. Surface micro ...
In semiconductor manufacturing, isotropic etching is a method commonly used to remove material from a substrate via a chemical process using an etchant substance. The etchant may be in liquid-, gas- or plasma -phase, [ 1 ] although liquid etchants such as buffered hydrofluoric acid (BHF) for silicon dioxide etching are more often used.
Use of a hardmask involves an additional deposition process, and hence additional cost. First, the hardmask material is deposited and etched into the required pattern using a standard photoresist process. Following that the underlying material can be etched through the hardmask. Finally the hardmask is removed with a further etching process. [2]