Search results
Results from the WOW.Com Content Network
Doping of a pure silicon array. Silicon based intrinsic semiconductor becomes extrinsic when impurities such as boron and antimony are introduced.. In semiconductor production, doping is the intentional introduction of impurities into an intrinsic (undoped) semiconductor for the purpose of modulating its electrical, optical and structural properties.
For example, doping pure silicon with a small amount of phosphorus will increase the carrier density of electrons, n. Then, since n > p, the doped silicon will be a n-type extrinsic semiconductor. Doping pure silicon with a small amount of boron will increase the carrier density of holes, so then p > n, and it will be a p-type extrinsic ...
In semiconductor physics, a donor is a dopant atom that, when added to a semiconductor, can form a n-type region. Phosphorus atom acting as a donor in the simplified 2D silicon lattice. For example, when silicon (Si), having four valence electrons , is to be doped as a n-type semiconductor , elements from group V like phosphorus (P) or arsenic ...
N-type semiconductors are created by doping an intrinsic semiconductor with an electron donor element during manufacture. The term n-type comes from the negative charge of the electron. In n-type semiconductors, electrons are the majority carriers and holes are the minority carriers. A common dopant for n-type silicon is phosphorus or arsenic.
In semiconductor physics, an acceptor is a dopant atom that when substituted into a semiconductor lattice forms a p-type region. Boron atom acting as an acceptor in the simplified 2D silicon lattice. When silicon (Si), having four valence electrons , is doped with elements from group III of the periodic table , such as boron (B) and aluminium ...
This allows us to treat the original semiconductor as unaffected in its electronic properties, with the impurity atoms only increasing the electron concentration. A limit to donor concentration in order to allow treatment as shallow donors is approximately 10 19 cm −3. Energy levels due to impurities deeper in the bandgap are called deep levels.
In intrinsic semiconductors the number of excited electrons and the number of holes are equal: n = p. This may be the case even after doping the semiconductor, though only if it is doped with both donors and acceptors equally. In this case, n = p still holds, and the semiconductor remains intrinsic, though doped.
At absolute zero temperature, all of the electrons have energy below the Fermi level; but at non-zero temperatures the energy levels are filled following a Fermi-Dirac distribution. In undoped semiconductors the Fermi level lies in the middle of a forbidden band or band gap between two allowed bands called the valence band and the conduction ...