enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cubic crystal system - Wikipedia

    en.wikipedia.org/wiki/Cubic_crystal_system

    A network model of a primitive cubic system The primitive and cubic close-packed (also known as face-centered cubic) unit cells. In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals.

  3. Miller index - Wikipedia

    en.wikipedia.org/wiki/Miller_index

    In either case, one needs to choose the three lattice vectors a 1, a 2, and a 3 that define the unit cell (note that the conventional unit cell may be larger than the primitive cell of the Bravais lattice, as the examples below illustrate). Given these, the three primitive reciprocal lattice vectors are also determined (denoted b 1, b 2, and b 3).

  4. Crystal system - Wikipedia

    en.wikipedia.org/wiki/Crystal_system

    where n 1, n 2, and n 3 are integers and a 1, a 2, and a 3 are three non-coplanar vectors, called primitive vectors. These lattices are classified by the space group of the lattice itself, viewed as a collection of points; there are 14 Bravais lattices in three dimensions; each belongs to one lattice system only.

  5. Unit cell - Wikipedia

    en.wikipedia.org/wiki/Unit_cell

    A primitive cell is a unit cell that contains exactly one lattice point. For unit cells generally, lattice points that are shared by n cells are counted as ⁠ 1 / n ⁠ of the lattice points contained in each of those cells; so for example a primitive unit cell in three dimensions which has lattice points only at its eight vertices is considered to contain ⁠ 1 / 8 ⁠ of each of them. [3]

  6. Bravais lattice - Wikipedia

    en.wikipedia.org/wiki/Bravais_lattice

    If the lattice or crystal is 2-dimensional, the primitive cell has a minimum area; likewise in 3 dimensions the primitive cell has a minimum volume. Despite this rigid minimum-size requirement, there is not one unique choice of primitive unit cell. In fact, all cells whose borders are primitive translation vectors will be primitive unit cells.

  7. Wigner–Seitz cell - Wikipedia

    en.wikipedia.org/wiki/Wigner–Seitz_cell

    Wigner–Seitz primitive cell for different angle parallelogram lattices. The unique property of a crystal is that its atoms are arranged in a regular three-dimensional array called a lattice. All the properties attributed to crystalline materials stem from this highly ordered structure. Such a structure exhibits discrete translational symmetry ...

  8. Overlayer - Wikipedia

    en.wikipedia.org/wiki/Overlayer

    Wood's notation takes the form (| | | | | | | |)where M is the chemical symbol of the substrate, A is the chemical symbol of the overlayer, () are the Miller indices of the surface plane, R and correspond to the rotational difference between the substrate and overlayer vectors, and the vector magnitudes shown are those of the substrate (subscripts) and of the overlayer (subscripts).

  9. Hexagonal lattice - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_lattice

    Vectors and are primitive translation vectors. The honeycomb point set is a special case of the hexagonal lattice with a two-atom basis. [ 1 ] The centers of the hexagons of a honeycomb form a hexagonal lattice, and the honeycomb point set can be seen as the union of two offset hexagonal lattices.