Search results
Results from the WOW.Com Content Network
3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]
[8] The unit quaternions give a group structure on the 3-sphere S 3 isomorphic to the groups Spin(3) and SU(2), i.e. the universal cover group of SO(3). The positive and negative basis vectors form the eight-element quaternion group.
In mathematics, a versor is a quaternion of norm one (a unit quaternion).Each versor has the form = = + , =, [,], where the r 2 = −1 condition means that r is a unit-length vector quaternion (or that the first component of r is zero, and the last three components of r are a unit vector in 3 dimensions).
In quantum mechanics, physical observables that are scalars, vectors, and tensors, must be represented by scalar, vector, and tensor operators, respectively. Whether something is a scalar, vector, or tensor depends on how it is viewed by two observers whose coordinate frames are related to each other by a rotation.
In the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation. By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3) , the group of all rotation matrices ...
The metric g can take up to two vectors or vector fields X, Y as arguments. In the former case the output is a number, the (pseudo-)inner product of X and Y. In the latter case, the inner product of X p, Y p is taken at all points p on the manifold so that g(X, Y) defines a smooth function on M. Vector fields act (by definition) as differential ...
6.4 Scalar curvature. 6.5 Traceless Ricci tensor. 6.6 ... The variation formula computations above define the principal symbol of the mapping which sends a pseudo ...
As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge. The divergence of a tensor field T {\displaystyle \mathbf {T} } of non-zero order k is written as div ( T ) = ∇ ⋅ T {\displaystyle \operatorname {div} (\mathbf {T} )=\nabla \cdot \mathbf {T} } , a contraction of a tensor field ...