enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    Examples of almost sure convergence; Example 1; Consider an animal of some short-lived species. We record the amount of food that this animal consumes per day. This sequence of numbers will be unpredictable, but we may be quite certain that one day the number will become zero, and will stay zero forever after. Example 2

  3. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    The Riemann series theorem states that if a series converges conditionally, it is possible to rearrange the terms of the series in such a way that the series converges to any value, or even diverges. Agnew's theorem characterizes rearrangements that preserve convergence for all series.

  4. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    In summary, series addition and scalar multiplication gives the set of convergent series and the set of series of real numbers the structure of a real vector space. Similarly, one gets complex vector spaces for series and convergent series of complex numbers. All these vector spaces are infinite dimensional.

  5. Absolute convergence - Wikipedia

    en.wikipedia.org/wiki/Absolute_convergence

    When a series of real or complex numbers is absolutely convergent, any rearrangement or reordering of that series' terms will still converge to the same value. This fact is one reason absolutely convergent series are useful: showing a series is absolutely convergent allows terms to be paired or rearranged in convenient ways without changing the ...

  6. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    For instance, in contrast to the behavior of finite sums, rearranging the terms of an infinite series may result in convergence to a different number (see the article on the Riemann rearrangement theorem for further discussion). An example of a convergent series is a geometric series which forms the basis of one of Zeno's famous paradoxes:

  7. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  8. Modes of convergence - Wikipedia

    en.wikipedia.org/wiki/Modes_of_convergence

    In a topological abelian group, convergence of a series is defined as convergence of the sequence of partial sums. An important concept when considering series is unconditional convergence, which guarantees that the limit of the series is invariant under permutations of the summands.

  9. Cauchy condensation test - Wikipedia

    en.wikipedia.org/wiki/Cauchy_condensation_test

    In mathematics, the Cauchy condensation test, named after Augustin-Louis Cauchy, is a standard convergence test for infinite series.For a non-increasing sequence of non-negative real numbers, the series = converges if and only if the "condensed" series = converges.