Search results
Results from the WOW.Com Content Network
In mathematics, the lattice of subgroups of a group is the lattice whose elements are the subgroups of , with the partial ordering being set inclusion. In this lattice, the join of two subgroups is the subgroup generated by their union , and the meet of two subgroups is their intersection .
In mathematics, especially in the area of algebra known as group theory, the term Z-group refers to a number of distinct types of groups: in the study of finite groups, a Z-group is a finite group whose Sylow subgroups are all cyclic. in the study of infinite groups, a Z-group is a group which possesses a very general form of central series.
One of the non-abelian groups is the semidirect product of a normal cyclic subgroup of order p 2 by a cyclic group of order p. The other is the quaternion group for p = 2 and a group of exponent p for p > 2. Order p 4: The classification is complicated, and gets much harder as the exponent of p increases.
Furthermore, the center of G is always an abelian and normal subgroup of G. Since all elements of Z(G) commute, it is closed under conjugation. A group homomorphism f : G → H might not restrict to a homomorphism between their centers. The image elements f (g) commute with the image f ( G), but they need not commute with all of H unless f is ...
The principal congruence subgroup of level 2, Γ(2), is also called the modular group Λ. Since PSL(2, Z/2Z) is isomorphic to S 3, Λ is a subgroup of index 6. The group Λ consists of all modular transformations for which a and d are odd and b and c are even.
A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, H ≠ G). This is often represented notationally by H < G, read as "H is a proper subgroup of G". Some authors also exclude the trivial group from being proper (that is, H ≠ {e} ). [2] [3] If H is a subgroup of G, then G is sometimes called an overgroup of H.
It is possible to define a graph with vertices and edges the disjoint union of all coset spaces Γ/G x and Γ/G y respectively. This graph is a tree, called the universal covering tree, on which Γ acts. It admits the graph Y as fundamental domain. The graph of groups given by the stabilizer subgroups on the fundamental domain corresponds to ...
In the presence of relations (i.e. for structures such as ordered groups or graphs, whose signature is not functional) it may make sense to relax the conditions on a subalgebra so that the relations on a weak substructure (or weak subalgebra) are at most those induced from the bigger structure. Subgraphs are an example where the distinction ...