enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Graphs of y = b x for various bases b: base 10, base e, base 2, base ⁠ 1 / 2 ⁠. Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.

  3. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    Second example: 87 x 11 = 957 because 8 + 7 = 15 so the 5 goes in between the 8 and the 7 and the 1 is carried to the 8. So it is basically 857 + 100 = 957. Or if 43 x 11 is equal to first 4+3=7 (For the tens digit) Then 4 is for the hundreds and 3 is for the tens. And the answer is 473.

  4. Fourth power - Wikipedia

    en.wikipedia.org/wiki/Fourth_power

    In arithmetic and algebra, the fourth power of a number n is the result of multiplying four instances of n together. So: n 4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube.

  5. Multiple (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiple_(mathematics)

    In other words, for the quantities a and b, it can be said that b is a multiple of a if b = na for some integer n, which is called the multiplier. If a is not zero, this is equivalent to saying that / is an integer. When a and b are both integers, and b is a multiple of a, then a is called a divisor of b. One says also that a divides b.

  6. Multiplicative digital root - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_digital_root

    Based on these restrictions, the number of candidates for -digit numbers with record-breaking persistence is only proportional to the square of , a tiny fraction of all possible -digit numbers. However, any number that is missing from the sequence above would have multiplicative persistence > 11; such numbers are believed not to exist, and ...

  7. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    The axioms for integers typically define them as equivalence classes of ordered pairs of natural numbers. The model is based on treating (x,y) as equivalent to x − y when x and y are treated as integers. Thus both (0,1) and (1,2) are equivalent to −1. The multiplication axiom for integers defined this way is

  8. Sixth power - Wikipedia

    en.wikipedia.org/wiki/Sixth_power

    In arithmetic and algebra the sixth power of a number n is the result of multiplying six instances of n together. So: n 6 = n × n × n × n × n × n. Sixth powers can be formed by multiplying a number by its fifth power, multiplying the square of a number by its fourth power, by cubing a square, or by squaring a cube. The sequence of sixth ...

  9. Multiplication table - Wikipedia

    en.wikipedia.org/wiki/Multiplication_table

    Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5. As you would start on the number you are multiplying, when you multiply by 0, you stay on 0 (0 is external and so the arrows have no effect on 0, otherwise 0 is used as a link to create a perpetual cycle).