enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    In linear algebra, linear transformations can be represented by matrices.If is a linear transformation mapping to and is a column vector with entries, then there exists an matrix , called the transformation matrix of , [1] such that: = Note that has rows and columns, whereas the transformation is from to .

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...

  4. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.

  5. List of common coordinate transformations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_coordinate...

    Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...

  6. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    The linear transformation to this right-handed coordinate triplet is a rotation matrix, = (⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡). This gives the transformation from the Cartesian to the spherical, the other way around is given by its inverse.

  7. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    They can be extended to represent rotations and transformations at the same time using homogeneous coordinates. Projective transformations are represented by 4 × 4 matrices. They are not rotation matrices, but a transformation that represents a Euclidean rotation has a 3 × 3 rotation matrix in the upper left corner.

  8. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    A detailed historical analysis in 1989 concluded that the formula should be attributed to Euler, and recommended calling it "Euler's finite rotation formula." [1] This proposal has received notable support, [2] but some others have viewed the formula as just one of many variations of the Euler–Rodrigues formula, thereby crediting both. [3]

  9. Projection (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Projection_(linear_algebra)

    A square matrix is called a projection matrix if it is equal to its square, i.e. if =. [2]: p. 38 A square matrix is called an orthogonal projection matrix if = = for a real matrix, and respectively = = for a complex matrix, where denotes the transpose of and denotes the adjoint or Hermitian transpose of .