Search results
Results from the WOW.Com Content Network
The Hamming(7,4) code may be written as a cyclic code over GF(2) with generator + +. In fact, any binary Hamming code of the form Ham(r, 2) is equivalent to a cyclic code, [3] and any Hamming code of the form Ham(r,q) with r and q-1 relatively prime is also equivalent to a cyclic code. [4]
The cyclic redundancy check (CRC) is a check of the remainder after division in the ring of polynomials over GF(2) (the finite field of integers modulo 2). That is, the set of polynomials where each coefficient is either zero or one, and arithmetic operations wrap around.
A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to digital data. [ 1 ] [ 2 ] Blocks of data entering these systems get a short check value attached, based on the remainder of a polynomial division of their contents.
In coding theory, the Bose–Chaudhuri–Hocquenghem codes (BCH codes) form a class of cyclic error-correcting codes that are constructed using polynomials over a finite field (also called a Galois field). BCH codes were invented in 1959 by French mathematician Alexis Hocquenghem, and independently in 1960 by Raj Chandra Bose and D. K. Ray ...
Performance of CIRC: [7] CIRC conceals long bust errors by simple linear interpolation. 2.5 mm of track length (4000 bits) is the maximum completely correctable burst length. 7.7 mm track length (12,300 bits) is the maximum burst length that can be interpolated.
Mathematical Methods in Electronics Engineering involves applying mathematical principles to analyze, design, and optimize electronic circuits and systems. Key areas include: [1] [2] Linear Algebra: Used to solve systems of linear equations that arise in circuit analysis. Applications include network theory and the analysis of electrical ...
In automata theory, combinational logic (also referred to as time-independent logic [1]) is a type of digital logic that is implemented by Boolean circuits, where the output is a pure function of the present input only.
Being a code that achieves this optimal trade-off, the Reed–Solomon code belongs to the class of maximum distance separable codes. While the number of different polynomials of degree less than k and the number of different messages are both equal to q k {\displaystyle q^{k}} , and thus every message can be uniquely mapped to such a polynomial ...