enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Constructible polygon - Wikipedia

    en.wikipedia.org/wiki/Constructible_polygon

    In mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not. There are infinitely many constructible polygons, but only 31 with an odd number of sides are known.

  3. 257-gon - Wikipedia

    en.wikipedia.org/wiki/257-gon

    The regular 257-gon (one with all sides equal and all angles equal) is of interest for being a constructible polygon: that is, it can be constructed using a compass and an unmarked straightedge. This is because 257 is a Fermat prime , being of the form 2 2 n + 1 (in this case n = 3).

  4. 65537-gon - Wikipedia

    en.wikipedia.org/wiki/65537-gon

    The regular 65537-gon (one with all sides equal and all angles equal) is of interest for being a constructible polygon: that is, it can be constructed using a compass and an unmarked straightedge. This is because 65,537 is a Fermat prime , being of the form 2 2 n + 1 (in this case n = 4).

  5. Heptadecagon - Wikipedia

    en.wikipedia.org/wiki/Heptadecagon

    As 17 is a Fermat prime, the regular heptadecagon is a constructible polygon (that is, one that can be constructed using a compass and unmarked straightedge): this was shown by Carl Friedrich Gauss in 1796 at the age of 19. [1] This proof represented the first progress in regular polygon construction in over 2000 years. [1]

  6. Category:Constructible polygons - Wikipedia

    en.wikipedia.org/.../Category:Constructible_polygons

    Articles related to constructible regular polygons, i.e. those amenable to compass and straightedge construction. Carl Friedrich Gauss proved that a regular polygon is constructible if its number of sides has no odd prime factors that are not Fermat primes, and no odd prime factors that are raised to a power of 2 or higher.

  7. Triacontagon - Wikipedia

    en.wikipedia.org/wiki/Triacontagon

    Regular triacontagon with given circumcircle. D is the midpoint of AM, DC = DF, and CF, which is the side length of the regular pentagon, is E 25 E 1.Since 1/30 = 1/5 - 1/6, the difference between the arcs subtended by the sides of a regular pentagon and hexagon (E 25 E 1 and E 25 A) is that of the regular triacontagon, AE 1.

  8. Constructible number - Wikipedia

    en.wikipedia.org/wiki/Constructible_number

    The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.

  9. Constructibility - Wikipedia

    en.wikipedia.org/wiki/Constructibility

    Constructible set (topology), a finite union of locally closed sets; Constructible topology, a topology on the spectrum of a commutative ring y in which every closed set is the image of Spec(B) in Spec(A) for some algebra B over A; Constructible universe, Kurt Gödel's model L of set theory, constructed by transfinite recursion