Search results
Results from the WOW.Com Content Network
Glucose transporter type 4 (GLUT4), also known as solute carrier family 2, facilitated glucose transporter member 4, is a protein encoded, in humans, by the SLC2A4 gene. GLUT4 is the insulin -regulated glucose transporter found primarily in adipose tissues and striated muscle (skeletal and cardiac).
The 160 kD protein product was first discovered in a screen for novel substrates of the serine-threonine kinase Akt2, which phosphorylates AS160 at Thr-642 and Ser-588 [5] [10] after insulin stimulation. [11]
When the insulin binds to these alpha subunits, 'glucose transport 4' (GLUT4) is released and transferred to the cell membrane to regulate glucose transport in and out of the cell. With the release of GLUT4, the allowance of glucose into cells is increased, and therefore the concentration of blood glucose might decrease.
A recent siRNA screen identified the involvement of MAP4K4 in the regulation of the glucose transporter GLUT4. [21] The silencing of MAP4K4 in adipocytes elevated the expression of peroxisome proliferator-activated receptor y (PPARy) – a nuclear hormone receptor responsible for the regulation of genes associated with adipocyte differentiation ...
GLUT4 has a Km value for glucose of about 5 mM, which as stated above is the normal blood glucose level in healthy individuals. GLUT4 is the most abundant glucose transporter in skeletal muscle and is thus considered to be rate limiting for glucose uptake and metabolism in resting muscles. [ 8 ]
GLUT4: Expressed in adipose tissues and striated muscle (skeletal muscle and cardiac muscle). Is the insulin-regulated glucose transporter. Responsible for insulin-regulated glucose storage. GLUT14: Expressed in testes: similarity to GLUT3 [12]
De novo identification tool for small molecules that works with Microsoft Excel (2010, 2013, 2016 and 2019). This software treats small molecules as mathematical partitions of the molecular mass and generates subfragment formulas with atoms that are sets of partitions comprising the molecular formula. Rational Numbers SPS Proprietary
PIR was established in 1984 by the National Biomedical Research Foundation as a resource to assist researchers and customers in the identification and interpretation of protein sequence information. Prior to that, the foundation compiled the first comprehensive collection of macromolecular sequences in the Atlas of Protein Sequence and ...