Search results
Results from the WOW.Com Content Network
Exponentiation with negative exponents is defined by the following identity, which holds for any integer n and nonzero b: =. [1] Raising 0 to a negative exponent is undefined but, in some circumstances, it may be interpreted as infinity (). [26]
In the case of the prime exponent p, this problem was extensively studied by A. I. Kostrikin during the 1950s, prior to the negative solution of the general Burnside problem. His solution, establishing the finiteness of B 0 ( m , p ), used a relation with deep questions about identities in Lie algebras in finite characteristic.
The reciprocal rule can be used to show that the power rule holds for negative exponents if it has already been established for positive exponents. Also, one can readily deduce the quotient rule from the reciprocal rule and the product rule .
Solving the inverse relation, as in the previous section, yields the expected 0 i = 1 and −1 i = 0, with negative values of n giving infinite results on the imaginary axis. [ citation needed ] Plotted in the complex plane , the entire sequence spirals to the limit 0.4383 + 0.3606 i , which could be interpreted as the value where n is infinite.
The running time of this algorithm is O(log exponent). When working with large values of exponent, this offers a substantial speed benefit over the previous two algorithms, whose time is O(exponent). For example, if the exponent was 2 20 = 1048576, this algorithm would have 20 steps instead of 1048576 steps.
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.
Mathematically, the simplest finite-time singularities are power laws for various exponents of the form , of which the simplest is hyperbolic growth, where the exponent is (negative) 1: .