Search results
Results from the WOW.Com Content Network
Using the XOR swap algorithm to exchange nibbles between variables without the use of temporary storage. In computer programming, the exclusive or swap (sometimes shortened to XOR swap) is an algorithm that uses the exclusive or bitwise operation to swap the values of two variables without using the temporary variable which is normally required.
In cryptography, the simple XOR cipher is a type of additive cipher, [1] an encryption algorithm that operates according to the principles: A ⊕ {\displaystyle \oplus } 0 = A, A ⊕ {\displaystyle \oplus } A = 0,
In information theory, the Hamming distance between two strings or vectors of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or equivalently, the minimum number of errors that could have transformed one string into the other.
Bitwise XOR of 4-bit integers. A bitwise XOR is a binary operation that takes two bit patterns of equal length and performs the logical exclusive OR operation on each pair of corresponding bits. The result in each position is 1 if only one of the bits is 1, but will be 0 if both are 0 or both are 1.
XOR/table Paul Hsieh's SuperFastHash [1] 32 bits Buzhash: variable XOR/table Fowler–Noll–Vo hash function (FNV Hash) 32, 64, 128, 256, 512, or 1024 bits xor/product or product/XOR Jenkins hash function: 32 or 64 bits XOR/addition Bernstein's hash djb2 [2] 32 or 64 bits shift/add or mult/add or shift/add/xor or mult/xor PJW hash / Elf Hash ...
XOR can be used to swap two numeric variables in computers, using the XOR swap algorithm; however this is regarded as more of a curiosity and not encouraged in practice. XOR linked lists leverage XOR properties in order to save space to represent doubly linked list data structures.
Stream ciphers are vulnerable to attack if the same key is used twice (depth of two) or more. Say we send messages A and B of the same length, both encrypted using same key, K. The stream cipher produces a string of bits C(K) the same length as the messages. The encrypted versions of the messages then are: E(A) = A xor C E(B) = B xor C
Source code that does bit manipulation makes use of the bitwise operations: AND, OR, XOR, NOT, and possibly other operations analogous to the boolean operators; there are also bit shifts and operations to count ones and zeros, find high and low one or zero, set, reset and test bits, extract and insert fields, mask and zero fields, gather and ...