Search results
Results from the WOW.Com Content Network
An inrush current limiter is a device or devices combination used to limit inrush current. Passive resistive components such as resistors (with power dissipation drawback), or negative temperature coefficient (NTC) thermistors are simple options while the positive one (PTC) is used to limit max current afterward as the circuit has been operating (with cool-down time drawback on both).
In electronics, it is common to refer to a circuit that is powered by a DC voltage source such as a battery or the output of a DC power supply as a DC circuit even though what is meant is that the circuit is DC powered. In a DC circuit, a power source (e.g. a battery, capacitor, etc.) has a positive and negative terminal, and likewise, the load ...
A fault current limiter (FCL), also known as fault current controller (FCC), [1] is a device which limits the prospective fault current when a fault occurs (e.g. in a power transmission network) without complete disconnection. The term includes superconducting, solid-state and inductive devices. [2]
If the example circuit from before is used with a pre-charge circuit which limits the dV/dT to less than 600 volts per second, then the inrush current will be reduced from 670 amperes to 7 amperes. This is a "kinder and gentler" way to activate a high voltage DC power distribution system.
NTC thermistors can be used as inrush-current limiting devices in power supply circuits when added in series with the circuit being protected. They present a higher resistance initially, which prevents large currents from flowing at turn-on. As current continues to flow, NTC thermistors heat up, allowing higher current flow during normal operation.
Current limiting reactor. The main motive of using current limiting reactors is to reduce short-circuit currents so that circuit breakers with lower short circuit breaking capacity can be used. They can also be used to protect other system components from high current levels and to limit the inrush current when starting a large motor. [5]
SMPSs often include safety features such as current limiting or a crowbar circuit to help protect the device and the user from harm. [1] In the event that an abnormal high-current power draw is detected, the switched-mode supply can assume this is a direct short and will shut itself down before damage is done.
Chopper circuits are used in multiple applications, including: Switched mode power supplies, including DC to DC converters. Speed controllers for DC motors; Driving brushless DC torque motors or stepper motors in actuators; Class D electronic amplifiers; Switched capacitor filters; Variable-frequency drives; D.C. voltage boosting; Battery ...