enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Congruence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(geometry)

    Congruence permits alteration of some properties, such as location and orientation, but leaves others unchanged, like distances and angles. The unchanged properties are called invariants. In geometry, two figures or objects are congruent if they have the same shape and size, or if one has the same shape and size as the mirror image of the other.

  3. Congruence relation - Wikipedia

    en.wikipedia.org/wiki/Congruence_relation

    Congruence relation. In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in the sense that algebraic operations done with equivalent elements will yield equivalent elements. [1]

  4. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    An example of congruence. The two figures on the left are congruent, while the third is similar to them. The last figure is neither. Congruences alter some properties, such as location and orientation, but leave others unchanged, like distance and angles. The latter sort of properties are called invariants and studying them is the essence of ...

  5. Matrix congruence - Wikipedia

    en.wikipedia.org/wiki/Matrix_congruence

    Matrix congruence. In mathematics, two square matrices A and B over a field are called congruent if there exists an invertible matrix P over the same field such that. where "T" denotes the matrix transpose. Matrix congruence is an equivalence relation. Matrix congruence arises when considering the effect of change of basis on the Gram matrix ...

  6. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Foundations of geometry is the study of geometries as axiomatic systems. There are several sets of axioms which give rise to Euclidean geometry or to non-Euclidean geometries. These are fundamental to the study and of historical importance, but there are a great many modern geometries that are not Euclidean which can be studied from this viewpoint.

  7. Isometry - Wikipedia

    en.wikipedia.org/wiki/Isometry

    Translation T is a direct isometry: a rigid motion. [1] In mathematics, an isometry (or congruence, or congruent transformation) is a distance -preserving transformation between metric spaces, usually assumed to be bijective. [a] The word isometry is derived from the Ancient Greek: ἴσος isos meaning "equal", and μέτρον metron meaning ...

  8. Equivalence class - Wikipedia

    en.wikipedia.org/wiki/Equivalence_class

    An equivalence relation on a set is a binary relation on satisfying the three properties: [1] for all (reflexivity), implies for all (symmetry), if and then for all (transitivity). The equivalence class of an element is defined as [2] The word "class" in the term "equivalence class" may generally be considered as a synonym of "set", although ...

  9. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Eigenvalues and eigenvectors. In linear algebra, an eigenvector (/ ˈaɪɡən -/ EYE-gən-) or characteristic vector is a vector that has its direction unchanged by a given linear transformation. More precisely, an eigenvector, , of a linear transformation, , is scaled by a constant factor, , when the linear transformation is applied to it: .