Search results
Results from the WOW.Com Content Network
In probability theory, an event is a set of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]
Intuitively, the additivity property says that the probability assigned to the union of two disjoint (mutually exclusive) events by the measure should be the sum of the probabilities of the events; for example, the value assigned to the outcome "1 or 2" in a throw of a dice should be the sum of the values assigned to the outcomes "1" and "2 ...
A probability is a way of assigning every event a value between zero and one, with the requirement that the event made up of all possible results (in our example, the event {1,2,3,4,5,6}) is assigned a value of one. To qualify as a probability, the assignment of values must satisfy the requirement that for any collection of mutually exclusive ...
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
The certainty that is adopted can be described in terms of a numerical measure, and this number, between 0 and 1 (where 0 indicates impossibility and 1 indicates certainty) is called the probability. Probability theory is used extensively in statistics , mathematics , science and philosophy to draw conclusions about the likelihood of potential ...
In the case of flipping a coin, flipping a head and flipping a tail are also mutually exclusive events. Both outcomes cannot occur for a single trial (i.e., when a coin is flipped only once). The probability of flipping a head and the probability of flipping a tail can be added to yield a probability of 1: 1/2 + 1/2 =1. [5]
Finally, there is a need to specify each event's likelihood of happening; this is done using the probability measure function, P. Once an experiment is designed and established, ω from the sample space Ω, all the events in F {\displaystyle \scriptstyle {\mathcal {F}}} that contain the selected outcome ω (recall that each event is a subset of ...
This conjunction of events may be computed using conditional probability: the probability of Event 2 is 364 / 365 , as person 2 may have any birthday other than the birthday of person 1. Similarly, the probability of Event 3 given that Event 2 occurred is 363 / 365 , as person 3 may have any of the birthdays not already taken by ...