enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Equality_(mathematics)

    Ernst Zermelo, a contributer to modern Set theory, was the first to explicitly formalize set equality in his Zermelo set theory (now obsolete), by his Axiom der Bestimmtheit. [31] Equality of sets is axiomatized in set theory in two different ways, depending on whether the axioms are based on a first-order language with or without equality.

  3. Equivalence class - Wikipedia

    en.wikipedia.org/wiki/Equivalence_class

    The set of the equivalence classes is sometimes called the quotient set or the quotient space of by , and is denoted by /. When the set S {\displaystyle S} has some structure (such as a group operation or a topology ) and the equivalence relation ∼ {\displaystyle \,\sim \,} is compatible with this structure, the quotient set often inherits a ...

  4. Equivalence (measure theory) - Wikipedia

    en.wikipedia.org/wiki/Equivalence_(measure_theory)

    Define the two measures on the real line as = [,] () = [,] for all Borel sets. Then and are equivalent, since all sets outside of [,] have and measure zero, and a set inside [,] is a -null set or a -null set exactly when it is a null set with respect to Lebesgue measure.

  5. Equivalent definitions of mathematical structures - Wikipedia

    en.wikipedia.org/wiki/Equivalent_definitions_of...

    Namely, the bijection X × X → Y × Y sends (x 1,x 2) to (f(x 1),f(x 2)); the bijection P(X) → P(Y) sends a subset A of X into its image f(A) in Y; and so on, recursively: a scale set being either product of scale sets or power set of a scale set, one of the two constructions applies. Let (X,U) and (Y,V) be two structures of the same signature.

  6. Equivalence principle - Wikipedia

    en.wikipedia.org/wiki/Equivalence_principle

    The equivalence principle is the hypothesis that the observed equivalence of gravitational and inertial mass is a consequence of nature. The weak form, known for centuries, relates to masses of any composition in free fall taking the same trajectories and landing at identical times.

  7. Extensionality - Wikipedia

    en.wikipedia.org/wiki/Extensionality

    In set theory, the axiom of extensionality states that two sets are equal if and only if they contain the same elements. In mathematics formalized in set theory, it is common to identify relations—and, most importantly, functions —with their extension as stated above, so that it is impossible for two relations or functions with the same ...

  8. Equivalence relation - Wikipedia

    en.wikipedia.org/wiki/Equivalence_relation

    Given any set , an equivalence relation over the set [] of all functions can be obtained as follows. Two functions are deemed equivalent when their respective sets of fixpoints have the same cardinality, corresponding to cycles of length one in a permutation.

  9. Equinumerosity - Wikipedia

    en.wikipedia.org/wiki/Equinumerosity

    Assuming the existence of an infinite set N consisting of all natural numbers and assuming the existence of the power set of any given set allows the definition of a sequence N, P(N), P(P(N)), P(P(P(N))), … of infinite sets where each set is the power set of the set preceding it. By Cantor's theorem, the cardinality of each set in this ...