Search results
Results from the WOW.Com Content Network
Functional programming languages are well-suited for reasoning about programs. Examples include Selinger's QPL, [65] and the Haskell-like language QML by Altenkirch and Grattage. [66] [67] Higher-order quantum programming languages, based on lambda calculus, have been proposed by van Tonder, [68] Selinger and Valiron [69] and by Arrighi and ...
The language also supports macro-like definitions of possibly parametrized quantum circuits and their expansion, qubit measurement and recording of the outcome in classical memory, synchronization with classical computers with the WAIT instruction which pauses the execution of a Quil program until a classical program has ended its execution ...
The language was first described in a paper published in July 2017, [1] and a reference source code implementation was released as part of IBM's Quantum Information Software Kit for use with their IBM Quantum Experience cloud quantum computing platform. [3]
[24] [25] A classical (or non-quantum) algorithm is a finite sequence of instructions, or a step-by-step procedure for solving a problem, where each step or instruction can be performed on a classical computer. Similarly, a quantum algorithm is a step-by-step procedure, where each of the steps can be performed on a quantum computer.
Quantum Computation Language (QCL) is one of the first implemented quantum programming languages. [1] The most important feature of QCL is the support for user-defined operators and functions. Its syntax resembles the syntax of the C programming language and its classical data types are similar to primitive data types in C. One can combine ...
Quantum cognition uses the mathematical formalism of quantum probability theory to model psychology phenomena when classical probability theory fails. [1] The field focuses on modeling phenomena in cognitive science that have resisted traditional techniques or where traditional models seem to have reached a barrier (e.g., human memory), [2] and modeling preferences in decision theory that seem ...
Quantum circuit algorithms can be implemented on integrated circuits, conducted with instrumentation, or written in a programming language for use with a quantum computer or a quantum processor. With quantum processor based systems, quantum programming languages help express quantum algorithms using high-level constructs. [1]
In quantum computing, a quantum algorithm is an algorithm that runs on a realistic model of quantum computation, the most commonly used model being the quantum circuit model of computation. [ 1 ] [ 2 ] A classical (or non-quantum) algorithm is a finite sequence of instructions, or a step-by-step procedure for solving a problem, where each step ...