Search results
Results from the WOW.Com Content Network
[1] [2] Unlike fixed-wing aircraft, of which the stall occurs at relatively low flight speed, the dynamic stall on a helicopter rotor emerges at high airspeeds or/and during manoeuvres with high load factors of helicopters, when the angle of attack(AOA) of blade elements varies intensively due to time-dependent blade flapping, cyclic pitch and ...
[1] As the airspeed increases without an increase in height, there comes a point where the pilot's reaction time would be insufficient to initiate a flare, and prevent a high-speed ground impact. Each increase in height increases the pilot reaction time. This is the reason the bottom right part of the H/V curve has a shallow gradient. If above ...
Helicopters with fly-by-wire systems allow a cyclic-style controller to be mounted to the side of the pilot seat. The cyclic is used to control the main rotor in order to change the helicopter's direction of movement. In a hover, the cyclic controls the movement of the helicopter forward, back, and laterally.
Its comprises helicopter aerodynamics, stability, control, structural dynamics, vibration, and aeroelastic and aeromechanical stability. [1] By studying the forces in helicopter flight, improved helicopter designs can be made, though due to the scale and speed of the dynamics, physical testing is non-trivial and expensive.
The charts show the added lift benefit produced by ground effect. [ 3 ] For fan and jet-powered vertical take-off and landing (VTOL) aircraft, ground effect when hovering can cause suckdown and fountain lift on the airframe and loss in hovering thrust if the engine sucks in its own exhaust gas, which is known as hot gas ingestion (HGI).
Abrasion strips on helicopter rotor blades are made of metal, often titanium or nickel, which are very hard, but less hard than sand. When a helicopter flies low to the ground in desert environments, sand striking the rotor blade can cause erosion. At night, sand hitting the metal abrasion strip causes a visible corona or halo around the rotor ...
It is a common emergency procedure taught to helicopter pilots as part of their training. In normal powered helicopter flight, air is drawn into the main rotor system from above and forced downward, but during autorotation, air moves into the rotor system from below as the helicopter descends.
As with fixed-wing aircraft, a helicopter may be properly loaded for takeoff, but near the end of a long flight when the fuel tanks are almost empty, the CG may have shifted enough for the helicopter to be out of balance laterally or longitudinally. [1] For helicopters with a single main rotor, the CG is usually close to the main rotor mast.