Search results
Results from the WOW.Com Content Network
In a general job scheduling problem, we are given n jobs J 1, J 2, ..., J n of varying processing times, which need to be scheduled on m machines while trying to minimize the makespan - the total length of the schedule (that is, when all the jobs have finished processing). In the specific variant known as parallel-task scheduling, all machines ...
The basic form of the problem of scheduling jobs with multiple (M) operations, over M machines, such that all of the first operations must be done on the first machine, all of the second operations on the second, etc., and a single job cannot be performed in parallel, is known as the flow-shop scheduling problem.
Optimal job scheduling is a class of optimization problems related to scheduling. The inputs to such problems are a list of jobs (also called processes or tasks) and a list of machines (also called processors or workers). The required output is a schedule – an assignment of jobs to machines. The schedule should optimize a certain objective ...
Flow Shop Ordonnancement. Flow-shop scheduling is an optimization problem in computer science and operations research.It is a variant of optimal job scheduling.In a general job-scheduling problem, we are given n jobs J 1, J 2, ..., J n of varying processing times, which need to be scheduled on m machines with varying processing power, while trying to minimize the makespan – the total length ...
The open-shop scheduling problem can be solved in polynomial time for instances that have only two workstations or only two jobs. It may also be solved in polynomial time when all nonzero processing times are equal: in this case the problem becomes equivalent to edge coloring a bipartite graph that has the jobs and workstations as its vertices, and that has an edge for every job-workstation ...
All jobs are equally prioritised. Johnson's rule is as follows: List the jobs and their times at each work center. Select the job with the shortest activity time. If that activity time is for the first work center, then schedule the job first. If that activity time is for the second work center then schedule the job last. Break ties arbitrarily.
Order the jobs by descending order of their processing-time, such that the job with the longest processing time is first. Schedule each job in this sequence into a machine in which the current load (= total processing-time of scheduled jobs) is smallest. Step 2 of the algorithm is essentially the list-scheduling (LS) algorithm. The difference ...
Identical-machines scheduling is an optimization problem in computer science and operations research.We are given n jobs J 1, J 2, ..., J n of varying processing times, which need to be scheduled on m identical machines, such that a certain objective function is optimized, for example, the makespan is minimized.