Search results
Results from the WOW.Com Content Network
The LN-3-2B is the Inertial Navigation System used in the Canadian CF-104. [12] The LN-3-13 is fitted to the Italian F-104S/CI and F-104S/CB; [13] enhanced variants of the F-104G from 1969 and onward. In the early 1980s a further upgrade led to the F-104S ASA version which kept the original LN-3; but the ASA-M version of the '90s was equipped ...
An accelerometer was announced that used infrared light to measure the change in distance between two micromirrors in a Fabry–Perot cavity. The proof mass is a single silicon crystal with a mass of 10–20 mg, suspended from the first mirror using flexible 1.5 μm-thick silicon nitride (Si 3 N 4) beams. The suspension allows the proof mass to ...
The spacecraft's primary instrumentation was a highly sensitive gravity gradiometer consisting of three pairs of accelerometers which measured gravitational gradients along three orthogonal axes. Launched on 17 March 2009, GOCE mapped the deep structure of the Earth's mantle and probed hazardous volcanic regions. It brought new insight into ...
Suppose x is a Gaussian random variable with mean m and variance . Also suppose we observe a value y = x + w , {\displaystyle y=x+w,} where w is Gaussian noise which is independent of x and has mean 0 and variance σ w 2 . {\displaystyle \sigma _{w}^{2}.}
The PIGA was based on an accelerometer developed by Dr. Fritz Mueller, then of the Kreiselgeraete Company, for the LEV-3 and experimental SG-66 guidance system of the Nazi era German V2 (EMW A4) ballistic missile and was known among the German rocket scientists as the MMIA "Mueller Mechanical Integrating Accelerometer". This system used ...
In orthogonal curvilinear coordinates of 3 dimensions, where = ; = = one can express the gradient of a scalar or vector field as = = = ; = For an orthogonal basis = = = The divergence of a vector field can then be written as = ( ) Also, = = = ; = = ; = = Therefore, = ( ) We can get an expression for the Laplacian in a similar manner by noting ...
A contrast is defined as the sum of each group mean multiplied by a coefficient for each group (i.e., a signed number, c j). [10] In equation form, = ¯ + ¯ + + ¯ ¯, where L is the weighted sum of group means, the c j coefficients represent the assigned weights of the means (these must sum to 0 for orthogonal contrasts), and ¯ j represents the group means. [8]
In relativity theory, proper acceleration [1] is the physical acceleration (i.e., measurable acceleration as by an accelerometer) experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at rest relative to the object being measured.