Search results
Results from the WOW.Com Content Network
A primorial x# is the product of all primes from 2 to x. The first: 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810 (sequence A002110 in the OEIS). 1# = 1 is sometimes included. A factorial x! is the product of all numbers from 1 to x. The first: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 ...
For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x 2 – 4. Factorization is not usually considered meaningful within number systems possessing division , such as the real or complex numbers , since any x {\displaystyle x} can be trivially written as ( x y ) × ( 1 / y ) {\displaystyle ...
Name First elements Short description OEIS Mersenne prime exponents : 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, ... Primes p such that 2 p − 1 is prime.: A000043 ...
The sum of its factors (including one and itself) sum to 360, exactly three times 120. Perfect numbers are order two ( 2-perfect ) by the same definition. 120 is the sum of a twin prime pair (59 + 61) and the sum of four consecutive prime numbers (23 + 29 + 31 + 37), four consecutive powers of two (8 + 16 + 32 + 64), and four consecutive powers ...
Ruth–Aaron triplets (overlapping Ruth–Aaron pairs) also exist. The first and possibly the second when counting distinct prime factors: 89460294 = 2 × 3 × 7 × 11 × 23 × 8419,
1 1: 1 2: 2 3: 6 4: 24 5: 120 6: 720 ... be found as the prime factors of the numbers ! ... and remain bounded for complex numbers with real part between 1 and 2. ...
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
If one of these values is 0, we have a linear factor. If the values are nonzero, we can list the possible factorizations for each. Now, 2 can only factor as 1×2, 2×1, (−1)×(−2), or (−2)×(−1). Therefore, if a second degree integer polynomial factor exists, it must take one of the values p(0) = 1, 2, −1, or −2. and likewise for p(1).