Search results
Results from the WOW.Com Content Network
The vertical axes of Planck's law plots building this animation were proportionally transformed to keep equal areas between functions and horizontal axis for wavelengths 380–780 nm. K indicates the color temperature in kelvins, and M indicates the color temperature in micro reciprocal degrees.
According to Planck's distribution law, the spectral energy density (energy per unit volume per unit frequency) at given temperature is given by: [4] [5] (,) = alternatively, the law can be expressed for the spectral radiance of a body for frequency ν at absolute temperature T given as: [6] [7] [8] (,) = where k B is the Boltzmann ...
Planckian locus in the CIE 1931 chromaticity diagram. In physics and color science, the Planckian locus or black body locus is the path or locus that the color of an incandescent black body would take in a particular chromaticity space as the blackbody temperature changes.
Publication 15:2018 introduces new illuminants for different white LED types with CCTs ranging from approx. 2700 K to 6600 K. LED-B1 through B5 defines LEDs with phosphor-converted blue light. LED-BH1 defines a blend of phosphor-converted blue and a red LED. LED-RGB1 defines the white light produced by a tricolor LED mix.
Before the advent of powerful personal computers, it was common to estimate the correlated color temperature by way of interpolation from look-up tables and charts. [18] The most famous such method is Robertson's, [ 19 ] who took advantage of the relatively even spacing of the mired scale (see above) to calculate the CCT T c using linear ...
The Planckian locus on the MacAdam (u, v) chromaticity diagram. The normals are lines of equal correlated color temperature. The CIE 1960 color space ("CIE 1960 UCS", variously expanded Uniform Color Space, Uniform Color Scale, Uniform Chromaticity Scale, Uniform Chromaticity Space) is another name for the (u, v) chromaticity space devised by David MacAdam.
A list of standardized illuminants, their CIE chromaticity coordinates (x,y) of a perfectly reflecting (or transmitting) diffuser, and their correlated color temperatures (CCTs) are given below. The CIE chromaticity coordinates are given for both the 2 degree field of view (1931) and the 10 degree field of view (1964). [ 1 ]
For a black body, Planck's law gives: [8] [11] = where (the Intensity or Brightness) is the amount of energy emitted per unit surface area per unit time per unit solid angle and in the frequency range between and +; is the temperature of the black body; is the Planck constant; is frequency; is the speed of light; and is the Boltzmann constant.