enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chudnovsky algorithm - Wikipedia

    en.wikipedia.org/wiki/Chudnovsky_algorithm

    The Chudnovsky algorithm is a fast method for calculating the digits of π, based on Ramanujan's π formulae.Published by the Chudnovsky brothers in 1988, [1] it was used to calculate π to a billion decimal places.

  3. Pi - Wikipedia

    en.wikipedia.org/wiki/Pi

    Fractions such as ⁠ 22 / 7 ⁠ and ⁠ 355 / 113 ⁠ are commonly used to approximate π, but no common fraction (ratio of whole numbers) can be its exact value. [21] Because π is irrational, it has an infinite number of digits in its decimal representation, and does not settle into an infinitely repeating pattern of digits.

  4. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    where C is the circumference of a circle, d is the diameter, and r is the radius.More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width.

  5. Bailey–Borwein–Plouffe formula - Wikipedia

    en.wikipedia.org/wiki/Bailey–Borwein–Plouffe...

    This does not compute the nth decimal digit of π (i.e., in base 10). [3] But another formula discovered by Plouffe in 2022 allows extracting the nth digit of π in decimal. [4] BBP and BBP-inspired algorithms have been used in projects such as PiHex [5] for calculating many digits of π using distributed computing. The existence of this ...

  6. Approximations of π - Wikipedia

    en.wikipedia.org/wiki/Approximations_of_π

    The latter fraction is the best possible rational approximation of π using fewer than five decimal digits in the numerator and denominator. Zu Chongzhi's results surpass the accuracy reached in Hellenistic mathematics, and would remain without improvement for close to a millennium.

  7. Liu Hui's π algorithm - Wikipedia

    en.wikipedia.org/wiki/Liu_Hui's_π_algorithm

    The area within a circle is equal to the radius multiplied by half the circumference, or A = r x C /2 = r x r x π.. Liu Hui argued: "Multiply one side of a hexagon by the radius (of its circumcircle), then multiply this by three, to yield the area of a dodecagon; if we cut a hexagon into a dodecagon, multiply its side by its radius, then again multiply by six, we get the area of a 24-gon; the ...

  8. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    The Decimal class in the standard library module decimal has user definable precision and limited mathematical operations (exponentiation, square root, etc. but no trigonometric functions). The Fraction class in the module fractions implements rational numbers. More extensive arbitrary precision floating point arithmetic is available with the ...

  9. Six nines in pi - Wikipedia

    en.wikipedia.org/wiki/Six_nines_in_pi

    A sequence of six consecutive nines occurs in the decimal representation of the number pi (π), starting at the 762nd decimal place. [1] [2] It has become famous because of the mathematical coincidence, and because of the idea that one could memorize the digits of π up to that point, and then suggest that π is rational.