enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Enzyme kinetics - Wikipedia

    en.wikipedia.org/wiki/Enzyme_kinetics

    For a given enzyme concentration and for relatively low substrate concentrations, the reaction rate increases linearly with substrate concentration; the enzyme molecules are largely free to catalyse the reaction, and increasing substrate concentration means an increasing rate at which the enzyme and substrate molecules encounter one another.

  3. Enzyme assay - Wikipedia

    en.wikipedia.org/wiki/Enzyme_assay

    Increasing the substrate concentration increases the rate of reaction (enzyme activity). However, enzyme saturation limits reaction rates. An enzyme is saturated when the active sites of all the molecules are occupied most of the time. At the saturation point, the reaction will not speed up, no matter how much additional substrate is added.

  4. Enzyme - Wikipedia

    en.wikipedia.org/wiki/Enzyme

    Enzymes can be classified by two main criteria: either amino acid sequence similarity (and thus evolutionary relationship) or enzymatic activity. Enzyme activity. An enzyme's name is often derived from its substrate or the chemical reaction it catalyzes, with the word ending in -ase.

  5. Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Michaelis–Menten_kinetics

    in which e is the concentration of free enzyme (not the total concentration) and x is the concentration of enzyme-substrate complex EA. Conservation of enzyme requires that [28] = where is now the total enzyme concentration. After combining the two expressions some straightforward algebra leads to the following expression for the concentration ...

  6. Control coefficient (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Control_coefficient...

    The flux control coefficient, instead, measures how much influence a given step has on the steady-state flux. A step with a high flux control coefficient means that changing the activity of the step (by changing the expression level of the enzyme) will have a large effect on the steady-state flux through the pathway and vice versa.

  7. Competitive inhibition - Wikipedia

    en.wikipedia.org/wiki/Competitive_inhibition

    Michaelis–Menten plot of the reaction velocity (v) against substrate concentration [S] of normal enzyme activity (1) compared to enzyme activity with a competitive inhibitor (2). Adding a competitive inhibitor to an enzymatic reaction increases the K m of the reaction, but the V max remains the same.

  8. Enzyme activator - Wikipedia

    en.wikipedia.org/wiki/Enzyme_activator

    Enzyme activators are molecules that bind to enzymes and increase their activity. They are the opposite of enzyme inhibitors. These molecules are often involved in the allosteric regulation of enzymes in the control of metabolism. In some cases, when a substrate binds to one catalytic subunit of an enzyme, this can trigger an increase in the ...

  9. Reversible Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Reversible_Michaelis...

    Enzymes act on small molecules called substrates, which an enzyme converts into products. Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life. The study of how fast an enzyme can transform a substrate into a product is called enzyme kinetics.