enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lattice path - Wikipedia

    en.wikipedia.org/wiki/Lattice_Path

    Lattice path of length 5 in ℤ 2 with S = { (2,0), (1,1), (0,-1) }.. In combinatorics, a lattice path L in the d-dimensional integer lattice ⁠ ⁠ of length k with steps in the set S, is a sequence of vectors ⁠,, …, ⁠ such that each consecutive difference lies in S. [1]

  3. Schröder number - Wikipedia

    en.wikipedia.org/wiki/Schröder_number

    The (large) Schröder numbers count both types of paths, and the little Schröder numbers count only the paths that only touch the diagonal but have no movements along it. [ 3 ] Just as there are (large) Schröder paths, a little Schröder path is a Schröder path that has no horizontal steps on the x {\displaystyle x} -axis.

  4. Map of lattices - Wikipedia

    en.wikipedia.org/wiki/Map_of_lattices

    A totally ordered set is a distributive lattice. 21. A metric lattice is modular. [6] 22. A modular lattice is semi-modular. [7] 23. A projective lattice is modular. [8] 24. A projective lattice is geometric. (def) 25. A geometric lattice is semi-modular. [9] 26. A semi-modular lattice is atomic. [10] [disputed – discuss] 27. An atomic ...

  5. Lindström–Gessel–Viennot lemma - Wikipedia

    en.wikipedia.org/wiki/Lindström–Gessel...

    An n-path from an n-tuple (,, …,) of vertices of G to an n-tuple (,, …,) of vertices of G will mean an n-tuple (,, …,) of paths in G, with each leading from to . This n -path will be called non-intersecting just in case the paths P i and P j have no two vertices in common (including endpoints) whenever i ≠ j {\displaystyle i\neq j} .

  6. Integer lattice - Wikipedia

    en.wikipedia.org/wiki/Integer_lattice

    In mathematics, the n-dimensional integer lattice (or cubic lattice), denoted ⁠ ⁠, is the lattice in the Euclidean space ⁠ ⁠ whose lattice points are n-tuples of integers. The two-dimensional integer lattice is also called the square lattice , or grid lattice.

  7. Self-avoiding walk - Wikipedia

    en.wikipedia.org/wiki/Self-avoiding_walk

    In mathematics, a self-avoiding walk (SAW) is a sequence of moves on a lattice (a lattice path) that does not visit the same point more than once. This is a special case of the graph theoretical notion of a path. A self-avoiding polygon (SAP) is a closed self-avoiding walk on a lattice. Very little is known rigorously about the self-avoiding ...

  8. Centered octahedral number - Wikipedia

    en.wikipedia.org/wiki/Centered_octahedral_number

    63 Delannoy paths through a 3 × 3 grid. The octahedron in the three-dimensional integer lattice, whose number of lattice points is counted by the centered octahedral number, is a metric ball for three-dimensional taxicab geometry, a geometry in which distance is measured by the sum of the coordinatewise distances rather than by Euclidean distance.

  9. Lattice graph - Wikipedia

    en.wikipedia.org/wiki/Lattice_graph

    A common type of lattice graph (known under different names, such as grid graph or square grid graph) is the graph whose vertices correspond to the points in the plane with integer coordinates, x-coordinates being in the range 1, ..., n, y-coordinates being in the range 1, ..., m, and two vertices being connected by an edge whenever the corresponding points are at distance 1.