enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. U-Net - Wikipedia

    en.wikipedia.org/wiki/U-Net

    U-Net is a convolutional neural network that was developed for image segmentation. [1] The network is based on a fully convolutional neural network [ 2 ] whose architecture was modified and extended to work with fewer training images and to yield more precise segmentation .

  3. Thresholding (image processing) - Wikipedia

    en.wikipedia.org/wiki/Thresholding_(image...

    Entropy-based methods result in algorithms that use the entropy of the foreground and background regions, the cross-entropy between the original and binarized image, etc., [6] Object Attribute -based methods search a measure of similarity between the gray-level and the binarized images, such as fuzzy shape similarity, edge coincidence, etc.,

  4. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    Berkeley Segmentation Data Set and Benchmarks 500 (BSDS500) 500 natural images, explicitly separated into disjoint train, validation and test subsets + benchmarking code. Based on BSDS300. Each image segmented by five different subjects on average. 500 Segmented images Contour detection and hierarchical image segmentation 2011 [11]

  5. Image segmentation - Wikipedia

    en.wikipedia.org/wiki/Image_segmentation

    In digital image processing and computer vision, image segmentation is the process of partitioning a digital image into multiple image segments, also known as image regions or image objects (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to ...

  6. Random walker algorithm - Wikipedia

    en.wikipedia.org/wiki/Random_walker_algorithm

    The random walker algorithm is an algorithm for image segmentation. In the first description of the algorithm, [1] a user interactively labels a small number of pixels with known labels (called seeds), e.g., "object" and "background". The unlabeled pixels are each imagined to release a random walker, and the probability is computed that each ...

  7. Segmentation-based object categorization - Wikipedia

    en.wikipedia.org/wiki/Segmentation-based_object...

    Given an image D containing an instance of a known object category, e.g. cows, the OBJ CUT algorithm computes a segmentation of the object, that is, it infers a set of labels m. Let m be a set of binary labels, and let Θ {\displaystyle \Theta } be a shape parameter( Θ {\displaystyle \Theta } is a shape prior on the labels from a layered ...

  8. 49ers suspend De'Vondre Campbell for refusing to enter game ...

    www.aol.com/report-49ers-suspend-devondre...

    The San Francisco 49ers on Monday suspended linebacker De'Vondre Campbell for the final three games of the regular season for refusing to play Thursday night against the Los Angeles Rams.. Niners ...

  9. Vision transformer - Wikipedia

    en.wikipedia.org/wiki/Vision_transformer

    Another encodes the quantized vectors back to image patches. The training objective attempts to make the reconstruction image (the output image) faithful to the input image. The discriminator (usually a convolutional network, but other networks are allowed) attempts to decide if an image is an original real image, or a reconstructed image by ...