enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Barycenter (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Barycenter_(astronomy)

    m 2 is the mass of the secondary in Earth masses (M E) a (km) is the average orbital distance between the centers of the two bodies; r 1 (km) is the distance from the center of the primary to the barycenter; R 1 (km) is the radius of the primary ⁠ r 1 / R 1 ⁠ a value less than one means the barycenter lies inside the primary

  3. Center of mass - Wikipedia

    en.wikipedia.org/wiki/Center_of_mass

    Let the percentage of the total mass divided between these two particles vary from 100% P 1 and 0% P 2 through 50% P 1 and 50% P 2 to 0% P 1 and 100% P 2, then the center of mass R moves along the line from P 1 to P 2. The percentages of mass at each point can be viewed as projective coordinates of the point R on this line, and are termed ...

  4. Barycentric coordinate system - Wikipedia

    en.wikipedia.org/wiki/Barycentric_coordinate_system

    A 3-simplex, with barycentric subdivisions of 1-faces (edges) 2-faces (triangles) and 3-faces (body). In geometry, a barycentric coordinate system is a coordinate system in which the location of a point is specified by reference to a simplex (a triangle for points in a plane, a tetrahedron for points in three-dimensional space, etc.).

  5. Two-body problem - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem

    [2] Let x 1 and x 2 be the vector positions of the two bodies, and m 1 and m 2 be their masses. The goal is to determine the trajectories x 1 (t) and x 2 (t) for all times t, given the initial positions x 1 (t = 0) and x 2 (t = 0) and the initial velocities v 1 (t = 0) and v 2 (t = 0). When applied to the two masses, Newton's second law states that

  6. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    In the spherical-coordinates example above, there are no cross-terms; the only nonzero metric tensor components are g rr = 1, g θθ = r 2 and g φφ = r 2 sin 2 θ. In his special theory of relativity, Albert Einstein showed that the distance ds between two spatial points is not constant, but depends on the motion of the observer.

  7. Barycentric - Wikipedia

    en.wikipedia.org/wiki/Barycentric

    Barycenter or barycentre, the center of mass of two or more bodies that orbit each other; Barycentric coordinates, coordinates defined by the common center of mass of two or more bodies (see Barycenter) Barycentric Coordinate Time, a coordinate time standard in the Solar system; Barycentric Dynamical Time, a former time standard in the Solar System

  8. Orbit equation - Wikipedia

    en.wikipedia.org/wiki/Orbit_equation

    In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...

  9. Geometrized unit system - Wikipedia

    en.wikipedia.org/wiki/Geometrized_unit_system

    We can convert a mass expressed in kilograms to the equivalent mass expressed in metres by multiplying by the conversion factor G/c 2. For example, the Sun's mass of 2.0 × 10 30 kg in SI units is equivalent to 1.5 km. This is half the Schwarzschild radius of a one solar mass black hole. All other conversion factors can be worked out by ...