Search results
Results from the WOW.Com Content Network
Oxygen evolution is the chemical process of generating elemental diatomic oxygen (O 2) by a chemical reaction, usually from water, the most abundant oxide compound in the universe. Oxygen evolution on Earth is effected by biotic oxygenic photosynthesis, photodissociation, hydroelectrolysis, and thermal decomposition of various oxides and oxyacids.
Of the two half reactions, the oxidation step is the most demanding because it requires the coupling of 4 electron and proton transfers and the formation of an oxygen-oxygen bond. This process occurs naturally in plants photosystem II to provide protons and electrons for the photosynthesis process and release oxygen to the atmosphere, [ 1 ] as ...
Under low oxygen concentrations and before the evolution of nitrogen fixation, biologically-available nitrogen compounds were in limited supply, [16] and periodic "nitrogen crises" could render the ocean inhospitable to life. [9] Significant concentrations of oxygen were just one of the prerequisites for the evolution of complex life. [9]
The experimental evidence that oxygen is released through cyclic reaction of oxygen evolving complex (OEC) within one PSII was provided by Pierre Joliot et al. [18] They have shown that, if dark-adapted photosynthetic material (higher plants, algae, and cyanobacteria) is exposed to a series of single turnover flashes, oxygen evolution is ...
X-ray Crystal structure of the Mn 4 O 5 Ca core of the oxygen evolving complex of Photosystem II at a resolution of 1.9 Å. [1] Water oxidation catalysis (WOC) is the acceleration (catalysis) of the conversion of water into oxygen and protons: 2 H 2 O → 4 H + + 4 e − + O 2. Many catalysts are effective, both homogeneous catalysts and ...
The oxygen-evolving complex (OEC), also known as the water-splitting complex, is a water-oxidizing enzyme involved in the photo-oxidation of water during the light reactions of photosynthesis. [3] OEC is surrounded by 4 core proteins of photosystem II at the membrane-lumen interface.
A simplified model of a chemical reaction with pathways for a light isotope (H) and heavy isotope (D) of hydrogen. The same principle applies for the light isotope 12 C and heavy isotope 13 C of carbon. The positions on the energy wells are based on the quantum harmonic oscillator. Note the lower energy state of the heavier isotope and the ...
The evolution of oxygenic photosynthesis in the atmosphere amplified the productivity of the biosphere, increasing biodiversity. [7] With the presence of photosynthesis providing oxygen to the atmosphere, respiration soon evolved to provide the necessary components photosynthesis demanded to function.