enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Outlier - Wikipedia

    en.wikipedia.org/wiki/Outlier

    The modified Thompson Tau test is used to find one outlier at a time (largest value of δ is removed if it is an outlier). Meaning, if a data point is found to be an outlier, it is removed from the data set and the test is applied again with a new average and rejection region. This process is continued until no outliers remain in a data set.

  3. Anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Anomaly_detection

    In data analysis, anomaly detection (also referred to as outlier detection and sometimes as novelty detection) is generally understood to be the identification of rare items, events or observations which deviate significantly from the majority of the data and do not conform to a well defined notion of normal behavior. [1]

  4. Interquartile range - Wikipedia

    en.wikipedia.org/wiki/Interquartile_range

    Box-and-whisker plot with four mild outliers and one extreme outlier. In this chart, outliers are defined as mild above Q3 + 1.5 IQR and extreme above Q3 + 3 IQR. The interquartile range is often used to find outliers in data. Outliers here are defined as observations that fall below Q1 − 1.5 IQR or above Q3 + 1.5 IQR.

  5. Box plot - Wikipedia

    en.wikipedia.org/wiki/Box_plot

    Because the whiskers must end at an observed data point, the whisker lengths can look unequal, even though 1.5 IQR is the same for both sides. All other observed data points outside the boundary of the whiskers are plotted as outliers. [10] The outliers can be plotted on the box-plot as a dot, a small circle, a star, etc. (see example below).

  6. Influential observation - Wikipedia

    en.wikipedia.org/wiki/Influential_observation

    An outlier may be defined as a data point that differs markedly from other observations. [6] [7] A high-leverage point are observations made at extreme values of independent variables. [8] Both types of atypical observations will force the regression line to be close to the point. [2]

  7. Dixon's Q test - Wikipedia

    en.wikipedia.org/wiki/Dixon's_Q_test

    However, at 95% confidence, Q = 0.455 < 0.466 = Q table 0.167 is not considered an outlier. McBane [1] notes: Dixon provided related tests intended to search for more than one outlier, but they are much less frequently used than the r 10 or Q version that is intended to eliminate a single outlier.

  8. Grubbs's test - Wikipedia

    en.wikipedia.org/wiki/Grubbs's_test

    This outlier is expunged from the dataset and the test is iterated until no outliers are detected. However, multiple iterations change the probabilities of detection, and the test should not be used for sample sizes of six or fewer since it frequently tags most of the points as outliers. [3] Grubbs's test is defined for the following hypotheses:

  9. Quartile - Wikipedia

    en.wikipedia.org/wiki/Quartile

    The lower fence is the "lower limit" and the upper fence is the "upper limit" of data, and any data lying outside these defined bounds can be considered an outlier. The fences provide a guideline by which to define an outlier, which may be defined in other ways. The fences define a "range" outside which an outlier exists; a way to picture this ...