Search results
Results from the WOW.Com Content Network
There are two reasons actual sales can vary from planned sales: either the volume sold varied from the expected quantity, known as sales volume variance, or the price point at which units were sold differed from the expected price points, known as sales price variance. Both scenarios could also simultaneously contribute to the variance.
Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.
In statistics, the variance function is a smooth function that depicts the variance of a random quantity as a function of its mean.The variance function is a measure of heteroscedasticity and plays a large role in many settings of statistical modelling.
The sum of squared deviations is a key component in the calculation of variance, another measure of the spread or dispersion of a data set. Variance is calculated by averaging the squared deviations. Deviation is a fundamental concept in understanding the distribution and variability of data points in statistical analysis. [1]
If the set is a sample from the whole population, then the unbiased sample variance can be calculated as 1017.538 that is the sum of the squared deviations about the mean of the sample, divided by 11 instead of 12. A function VAR.S in Microsoft Excel gives the unbiased sample variance while VAR.P is for population variance.
In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. [1] Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered.
Variance analysis can be carried out for both costs and revenues. Variance analysis is usually associated with explaining the difference (or variance) between actual costs and the standard costs allowed for the good output. For example, the difference in materials costs can be divided into a materials price variance and a materials usage variance.
A i is the number of data type A at sample site i, B i is the number of data type B at sample site i, K is the number of sites sampled and || is the absolute value. This index is probably better known as the index of dissimilarity (D). [44] It is closely related to the Gini index. This index is biased as its expectation under a uniform ...