Search results
Results from the WOW.Com Content Network
In addition to 3D drug printing which aims at printing drug formulations, 3D printing can be used to fabricate materials functionalized by drugs, e.g., antibiotics or angiogenic agents. [8] This area which is a part of biomaterials engineering, aims at products such as adhesive patches for wound healing , hydrogel , and non-hydrogel implants ...
Pharmaceutical manufacturing is the process of industrial-scale synthesis of pharmaceutical drugs as part of the pharmaceutical industry. The process of drug manufacturing can be broken down into a series of unit operations, such as milling, granulation, coating, tablet pressing, and others.
Melt Extrusion: The process begins with a polymer resin being melted and extruded through a spinneret, which is a device with tiny holes. High-Speed Airflow : Simultaneously, high-speed hot air or gas is blown onto the extruded polymer streams.
Before use, the two halves are separated, and the capsule is filled with powder or more normally pellets made by the process of extrusion and spheronization (either by placing a compressed slug of powder into one half of the capsule or by filling one half of the capsule with loose powder) and the other half of the capsule is pressed on.
For use in pharmaceutical products, extrusion through nano-porous, polymeric filters is being used to produce suspensions of lipid vesicles liposomes or transfersomes with a particular size of a narrow size distribution. The anti-cancer drug Doxorubicin in liposome delivery system is formulated by extrusion, for example. Hot melt extrusion is ...
Different models of 3D printing tissue and organs. Three dimensional (3D) bioprinting is the use of 3D printing–like techniques to combine cells, growth factors, bio-inks, and biomaterials to fabricate functional structures that were traditionally used for tissue engineering applications but in recent times have seen increased interest in other applications such as biosensing, and ...
Inkjet 3-D printer used for production of drug-eluting implants. Traditional bio-printing technologies used in the field of biomedical engineering include inkjet-based systems, extrusion-based systems, and laser-assisted systems that can be used to create highly specific and individual implants for patients. [4]
Hot melt extrusion is utilized in pharmaceutical solid oral dose processing to enable delivery of drugs with poor solubility and bioavailability. Hot melt extrusion has been shown to molecularly disperse poorly soluble drugs in a polymer carrier increasing dissolution rates and bioavailability.