Search results
Results from the WOW.Com Content Network
A conceptually very simple method for generating exponential variates is based on inverse transform sampling: Given a random variate U drawn from the uniform distribution on the unit interval (0, 1), the variate = has an exponential distribution, where F −1 is the quantile function, defined by
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
The infinite binary tree T 2.Its nodes are labeled by strings of 0s and 1s. Although initially the Grigorchuk group was defined as a group of Lebesgue measure-preserving transformations of the unit interval, at present this group is usually given by its realization as a group of automorphisms of the infinite regular binary rooted tree T 2.
In mathematics, the exponential function can be characterized in many ways. This article presents some common characterizations, discusses why each makes sense, and proves that they are all equivalent. The exponential function occurs naturally in many branches of mathematics. Walter Rudin called it "the most important function in mathematics". [1]
In addition to its role in real analysis, the unit interval is used to study homotopy theory in the field of topology. In the literature, the term "unit interval" is sometimes applied to the other shapes that an interval from 0 to 1 could take: (0,1], [0,1), and (0,1). However, the notation I is most commonly reserved for the closed interval [0,1].
Intervals are ubiquitous in mathematical analysis. For example, they occur implicitly in the epsilon-delta definition of continuity; the intermediate value theorem asserts that the image of an interval by a continuous function is an interval; integrals of real functions are defined over an interval; etc.
In the language of topology, Euler's formula states that the imaginary exponential function is a morphism of topological groups from the real line to the unit circle . In fact, this exhibits R {\displaystyle \mathbb {R} } as a covering space of S 1 {\displaystyle \mathbb {S} ^{1}} .
Graph of tent map function Example of iterating the initial condition x 0 = 0.4 over the tent map with μ = 1.9. In mathematics, the tent map with parameter μ is the real-valued function f μ defined by ():= {,}, the name being due to the tent-like shape of the graph of f μ.