Search results
Results from the WOW.Com Content Network
The implementation of exception handling in programming languages typically involves a fair amount of support from both a code generator and the runtime system accompanying a compiler. (It was the addition of exception handling to C++ that ended the useful lifetime of the original C++ compiler, Cfront. [18]) Two schemes are most common.
The Perl mechanism for exception handling uses die to throw an exception when wrapped inside an eval {...}; block. After the eval, the special variable $@ contains the value passed from die. Perl 5.005 added the ability to throw objects as well as strings. This allows better introspection and handling of types of exceptions.
<exception> Provides several types and functions related to exception handling, including std::exception, the base class of all exceptions thrown by the Standard Library. <initializer_list> Added in C++11. Provides initializer list support. <limits>
An exception handling mechanism allows the procedure to raise an exception [2] if this precondition is violated, [1] for example if the procedure has been called on an abnormal set of arguments. The exception handling mechanism then handles the exception. [3] The precondition, and the definition of exception, is subjective.
Microsoft Structured Exception Handling is the native exception handling mechanism for Windows and a forerunner technology to Vectored Exception Handling (VEH). [1] It features the finally mechanism not present in standard C++ exceptions (but present in most imperative languages introduced later).
Exception safety is the state of code working correctly when exceptions are thrown. [1] To aid in ensuring exception safety, C++ standard library developers have devised a set of exception safety levels , contractual guarantees of the behavior of a data structure's operations with regards to exceptions.
setjmp.h is a header defined in the C standard library to provide "non-local jumps": control flow that deviates from the usual subroutine call and return sequence. The complementary functions setjmp and longjmp provide this functionality.
They provide an elegant way of handling errors, without resorting to exception handling; when a function that may fail returns a result type, the programmer is forced to consider success or failure paths, before getting access to the expected result; this eliminates the possibility of an erroneous programmer assumption.