enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles , see Trigonometric functions . Other definitions, and therefore other proofs are based on the Taylor series of sine and cosine , or on the differential equation f ″ + f = 0 ...

  3. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Proof of the sum-and-difference-to-product cosine identity for prosthaphaeresis calculations using an isosceles triangle. The product-to-sum identities [28] or prosthaphaeresis formulae can be proven by expanding their right-hand sides using the angle addition theorems.

  4. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    There are a number of ways to demonstrate the validity of the small-angle approximations. The most direct method is to truncate the Maclaurin series for each of the trigonometric functions. Depending on the order of the approximation , cos ⁡ θ {\displaystyle \textstyle \cos \theta } is approximated as either 1 {\displaystyle 1} or as 1 − 1 ...

  5. Differentiation of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of...

    We conclude that for 0 < θ < ⁠ 1 / 2 ⁠ π, the quantity sin(θ)/θ is always less than 1 and always greater than cos(θ). Thus, as θ gets closer to 0, sin(θ)/θ is "squeezed" between a ceiling at height 1 and a floor at height cos θ, which rises towards 1; hence sin(θ)/θ must tend to 1 as θ tends to 0 from the positive side:

  6. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    The y-axis ordinates of A, B and D are sin θ, tan θ and csc θ, respectively, while the x-axis abscissas of A, C and E are cos θ, cot θ and sec θ, respectively. Signs of trigonometric functions in each quadrant. Mnemonics like "all students take calculus" indicates when sine, cosine, and tangent are positive from quadrants I to IV. [8]

  7. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    0 ≤ y ≤ π: 0° ≤ y ≤ 180° arctangent: y = arctan(x) x = tan(y) all real numbers: − ⁠ π / 2 ⁠ < y < ⁠ π / 2 ⁠ −90° < y < 90° arccotangent: y = arccot(x) x = cot(y) all real numbers 0 < y < π: 0° < y < 180° arcsecant: y = arcsec(x) x = sec(y) x ≤ −1 or 1 ≤ x: 0 ≤ y < ⁠ π / 2 ⁠ or ⁠ π / 2 ⁠ < y ≤ π ...

  8. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    Define the bijection g(t) from T to (0, 1): If t is the n th string in sequence s, let g(t) be the n th number in sequence r ; otherwise, g(t) = 0.t 2. To construct a bijection from T to R, start with the tangent function tan(x), which is a bijection from (−π/2, π/2) to R (see the figure shown on the right).

  9. Transcendental function - Wikipedia

    en.wikipedia.org/wiki/Transcendental_function

    For the first function (), the exponent can be replaced by any other irrational number, and the function will remain transcendental. For the second and third functions f 2 ( x ) {\displaystyle f_{2}(x)} and f 3 ( x ) {\displaystyle f_{3}(x)} , the base e {\displaystyle e} can be replaced by any other positive real number base not equaling 1 ...