Search results
Results from the WOW.Com Content Network
A barrier function is also called an interior penalty function, as it is a penalty function that forces the solution to remain within the interior of the feasible region. The two most common types of barrier functions are inverse barrier functions and logarithmic barrier functions.
An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...
Barrier methods constitute an alternative class of algorithms for constrained optimization. These methods also add a penalty-like term to the objective function, but in this case the iterates are forced to remain interior to the feasible domain and the barrier is in place to bias the iterates to remain away from the boundary of the feasible region.
The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and Binh. [6] The software developed by Deb can be downloaded, [ 7 ] which implements the NSGA-II procedure with GAs, or the program posted on Internet, [ 8 ] which implements the NSGA-II procedure with ES.
For another, related model of a barrier, see Delta potential barrier (QM), which can be regarded as a special case of the finite potential barrier. All results from this article immediately apply to the delta potential barrier by taking the limits V 0 → ∞ , a → 0 {\displaystyle V_{0}\to \infty ,\;a\to 0} while keeping V 0 a = λ ...
A barrier certificate [1] or barrier function is used to prove that a given region is forward invariant for a given ordinary differential equation or hybrid dynamical system. [2] That is, a barrier function can be used to show that if a solution starts in a given set , then it cannot leave that set.
In physics, quantum tunnelling, barrier penetration, or simply tunnelling is a quantum mechanical phenomenon in which an object such as an electron or atom passes through a potential energy barrier that, according to classical mechanics, should not be passable due to the object not having sufficient energy to pass or surmount the barrier.
In electronics, a tunnel junction is a barrier, such as a thin insulating layer or electric potential, between two electrically conducting materials. Electrons (or quasiparticles) pass through the barrier by the process of quantum tunnelling. Classically, the electron has zero probability of passing through the barrier.