enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass–luminosity relation - Wikipedia

    en.wikipedia.org/wiki/Massluminosity_relation

    The mass/luminosity relationship can also be used to determine the lifetime of stars by noting that lifetime is approximately proportional to M/L although one finds that more massive stars have shorter lifetimes than that which the M/L relationship predicts. A more sophisticated calculation factors in a star's loss of mass over time.

  3. Main sequence - Wikipedia

    en.wikipedia.org/wiki/Main_sequence

    The mass, radius, and luminosity of a star are closely interlinked, and their respective values can be approximated by three relations. First is the Stefan–Boltzmann law, which relates the luminosity L, the radius R and the surface temperature T eff. Second is the massluminosity relation, which relates the luminosity L and the mass M.

  4. Hertzsprung–Russell diagram - Wikipedia

    en.wikipedia.org/wiki/Hertzsprung–Russell_diagram

    Asymptotic giant branch – Stars powered by fusion of hydrogen and helium in shell with an inactive core of carbon and oxygen; Galaxy color–magnitude diagram – Chart depicting the relationship between brightness and mass of large star systems; Hayashi track – Luminosity–temperature relationship in stars

  5. Stellar structure - Wikipedia

    en.wikipedia.org/wiki/Stellar_structure

    The internal structure of a main sequence star depends upon the mass of the star. In stars with masses of 0.3–1.5 solar masses (M ☉), including the Sun, hydrogen-to-helium fusion occurs primarily via proton–proton chains, which do not establish a steep temperature gradient. Thus, radiation dominates in the inner portion of solar mass stars.

  6. Visual binary - Wikipedia

    en.wikipedia.org/wiki/Visual_binary

    The greater a star's luminosity, the greater its mass will be. The absolute magnitude or luminosity of a star can be found by knowing the distance to it and its apparent magnitude. The stars bolometric magnitude is plotted against its mass, in units of the Sun's mass. This is determined through observation and then the mass of the star is read ...

  7. Galaxy color–magnitude diagram - Wikipedia

    en.wikipedia.org/wiki/Galaxy_color–magnitude...

    A mock-up of the galaxy color–magnitude diagram with three populations: the red sequence, the blue cloud, and the green valley. The galaxy color–magnitude diagram shows the relationship between absolute magnitude (a measure of luminosity) and mass of galaxies.

  8. Hayashi track - Wikipedia

    en.wikipedia.org/wiki/Hayashi_track

    The shape and position of the Hayashi track on the Hertzsprung–Russell diagram depends on the star's mass and chemical composition. For solar-mass stars, the track lies at a temperature of roughly 4000 K. Stars on the track are nearly fully convective and have their opacity dominated by hydrogen ions.

  9. Light curve - Wikipedia

    en.wikipedia.org/wiki/Light_curve

    Periodic dips in a star's light curve graph could be due to an exoplanet passing in front of the star that it is orbiting. When an exoplanet passes in front of its star, light from that star is temporarily blocked, resulting in a dip in the star's light curve. These dips are periodic, as planets periodically orbit a star.