Search results
Results from the WOW.Com Content Network
Protein synthesis is a very similar process for both prokaryotes and eukaryotes but there are some distinct differences. [1] Protein synthesis can be divided broadly into two phases: transcription and translation. During transcription, a section of DNA encoding a protein, known as a gene, is converted into a molecule called messenger RNA (mRNA).
Membrane enzymes may have many activities, such as oxidoreductase, transferase or hydrolase. [3] Cell adhesion molecules allow cells to identify each other and interact. For example, proteins involved in immune response
Since the ER is the site of protein synthesis, it would serve as the parent organelle, and the cis face of the golgi, where proteins and signals are received, would be the acceptor. In order for the transport vesicle to accurately undergo a fusion event, it must first recognize the correct target membrane then fuse with that membrane.
Illustration of a eukaryotic cell membrane Comparison of a eukaryotic vs. a prokaryotic cell membrane. The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extracellular space).
A membrane transport protein is a membrane protein involved in the movement of ions, small molecules, and macromolecules, such as another protein, across a biological membrane. Transport proteins are integral transmembrane proteins ; that is they exist permanently within and span the membrane across which they transport substances.
An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.
The cleavage of a signal protein, resistance to proteases, and glycosylation provided by the endoplasmic reticulum to membrane-bound polyribosomes allows for more effective protein production. [3] Presence of the signal protein makes the protein bulkier, a different shape, and harder to store until the unusable signal sequence can be cleaved. [3]
PTMs are important components in cell signalling, as for example when prohormones are converted to hormones. Post-translational modifications can occur on the amino acid side chains or at the protein's C-or N-termini. [1] They can expand the chemical set of the 22 amino acids by changing an existing functional group or adding a new one such as ...