Search results
Results from the WOW.Com Content Network
Neutral buoyancy occurs when an object's average density is equal to the density of the fluid in which it is immersed, resulting in the buoyant force balancing the force of gravity that would otherwise cause the object to sink (if the body's density is greater than the density of the fluid in which it is immersed) or rise (if it is less).
During the dive, buoyancy is controlled by adjusting the volume of air in the buoyancy compensation device (BCD) and, if worn, the dry suit, in order to achieve negative, neutral, or positive buoyancy as needed. The amount of weight required is determined by the maximum overall positive buoyancy of the fully equipped but unweighted diver ...
In hydrodynamics, a plume or a column is a vertical body of one fluid moving through another. Several effects control the motion of the fluid, including momentum (inertia), diffusion and buoyancy (density differences). Pure jets and pure plumes define flows that are driven entirely by momentum and buoyancy effects, respectively. Flows between ...
In other words, the "buoyancy force" on a submerged body is directed in the opposite direction to gravity and is equal in magnitude to B = ρ f V g . {\displaystyle B=\rho _{f}Vg.\,} The net force on the object must be zero if it is to be a situation of fluid statics such that Archimedes principle is applicable, and is thus the sum of the ...
If the air parcel is pushed up and =, the air parcel will not move any further. If the air parcel is pushed up and N 2 < 0 {\displaystyle N^{2}<0} , (i.e. the Brunt–Väisälä frequency is imaginary), then the air parcel will rise and rise unless N 2 {\displaystyle N^{2}} becomes positive or zero again further up in the atmosphere.
Diving physics, or the physics of underwater diving, is the basic aspects of physics which describe the effects of the underwater environment on the underwater diver and their equipment, and the effects of blending, compressing, and storing breathing gas mixtures, and supplying them for use at ambient pressure. These effects are mostly ...
The result is either a positive or negative buoyancy force. The greater the thermal difference and the height of the structure, the greater the buoyancy force, and thus the stack effect. The stack effect can be useful to drive natural ventilation in certain climates, but in other circumstances may be a cause of unwanted air infiltration or fire ...
Swimming relies on the nearly neutral buoyancy of the human body. On average, the body has a relative density of 0.98 compared to water, which causes the body to float. However, buoyancy varies based on body composition, lung inflation, muscle and fat content, centre of gravity and the salinity of the water.