enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Copper (II) chloride - Wikipedia

    en.wikipedia.org/wiki/Copper(II)_chloride

    [12] [13] Copper(II) chloride reacts with several metals to produce copper metal or copper(I) chloride (CuCl) with oxidation of the other metal. To convert copper(II) chloride to copper(I) chloride, it can be convenient to reduce an aqueous solution with sulfur dioxide as the reductant: [8] 2 CuCl 2 + SO 2 + 2 H 2 O → 2 CuCl + 2 HCl + H 2 SO 4

  3. Copper–chlorine cycle - Wikipedia

    en.wikipedia.org/wiki/Copper–chlorine_cycle

    Simplified diagram of the Copper–Chlorine cycle. The copper–chlorine cycle (Cu–Cl cycle) is a four-step thermochemical cycle for the production of hydrogen. The Cu–Cl cycle is a hybrid process that employs both thermochemical and electrolysis steps. It has a maximum temperature requirement of about 530 degrees Celsius. [1]

  4. Exchange current density - Wikipedia

    en.wikipedia.org/wiki/Exchange_current_density

    The nature of the electroactive species (the analyte) in the solution also critically affects the exchange current densities, both the reduced and oxidized form. Less important but still relevant are the environment of the solution including the solvent, nature of other electrolytes, and temperature.

  5. Thermal decomposition - Wikipedia

    en.wikipedia.org/wiki/Thermal_decomposition

    The equilibrium fraction of decomposed molecules increases with the temperature. Since thermal decomposition is a kinetic process, the observed temperature of its beginning in most instances will be a function of the experimental conditions and sensitivity of the experimental setup.

  6. Electrolytic process - Wikipedia

    en.wikipedia.org/wiki/Electrolytic_process

    Electrolysis is usually done in bulk using hundreds of sheets of metal connected to an electric power source. In the production of copper, these pure sheets of copper are used as starter material for the cathodes, and are then lowered into a solution such as copper sulfate with the large anodes that are cast from impure (97% pure) copper.

  7. Overpotential - Wikipedia

    en.wikipedia.org/wiki/Overpotential

    An example is the electrolysis of an aqueous sodium chloride solution—although oxygen should be produced at the anode based on its potential, bubble overpotential causes chlorine to be produced instead, which allows the easy industrial production of chlorine and sodium hydroxide by electrolysis.

  8. Electrochlorination - Wikipedia

    en.wikipedia.org/wiki/Electrochlorination

    A low voltage DC current is applied, electrolysis happens producing sodium hypochlorite and hydrogen gas (H 2). The solution travels to a tank that separates the hydrogen gas based on its low density. [1] Only water and sodium chloride are used. The simplified chemical reaction is: NaCl + H 2 O + energy → NaOCl + H 2 [citation needed]

  9. Copper electroplating - Wikipedia

    en.wikipedia.org/wiki/Copper_electroplating

    Acid copper sulfate electrolytes are relatively simple solutions of copper sulfate and sulfuric acid that are cheaper and easier to maintain and control than cyanide copper electrolytes. [2] Compared to cyanide baths, they provide higher current efficiency and allow for higher current density and thus faster plating rates, but they usually have ...