Search results
Results from the WOW.Com Content Network
In mathematics, Minkowski's question-mark function, denoted ?(x), is a function with unusual fractal properties, defined by Hermann Minkowski in 1904. [1] It maps quadratic irrational numbers to rational numbers on the unit interval , via an expression relating the continued fraction expansions of the quadratics to the binary expansions of the ...
For such a double limit to exist, this definition requires the value of f approaches L along every possible path approaching (p, q), excluding the two lines x = p and y = q. As a result, the multiple limit is a weaker notion than the ordinary limit: if the ordinary limit exists and equals L, then the multiple limit exists and also equals L. The ...
A specific element x of X is a value of the variable, and the corresponding element of Y is the value of the function at x, or the image of x under the function. A function f , its domain X , and its codomain Y are often specified by the notation f : X → Y . {\displaystyle f:X\to Y.}
If x is true, then the result of expression x → y is taken to be that of y (e.g. if x is true and y is false, then x → y is also false). But if x is false, then the value of y can be ignored; however, the operation must return some Boolean value and there are only two choices. So by definition, x → y is true when x is false (relevance ...
This last integral is , since (+) is the null function (because is a polynomial function of degree ). Since each function f ( k ) {\displaystyle f^{(k)}} (with 0 ≤ k ≤ 2 n {\displaystyle 0\leq k\leq 2n} ) takes integer values at 0 {\displaystyle 0} and π {\displaystyle \pi } and since the same thing happens with the sine and the cosine ...
The information geometry definition of divergence (the subject of this article) was initially referred to by alternative terms, including "quasi-distance" Amari (1982, p. 369) and "contrast function" Eguchi (1985), though "divergence" was used in Amari (1985) for the α-divergence, and has become standard for the general class. [1] [2]
When the characteristic of K is 2, so that 2 is not a unit, it is still possible to use a quadratic form to define a symmetric bilinear form B′(x, y) = Q(x + y) − Q(x) − Q(y). However, Q(x) can no longer be recovered from this B′ in the same way, since B′(x, x) = 0 for all x (and is thus alternating). [8] Alternatively, there always ...
Here F X is the cumulative distribution function of X, f X is the corresponding probability density function, Q X (p) is the corresponding inverse cumulative distribution function also called the quantile function, [2] and the integrals are of the Riemann–Stieltjes kind.