Search results
Results from the WOW.Com Content Network
General-purpose computing on graphics processing units (GPGPU, or less often GPGP) is the use of a graphics processing unit (GPU), which typically handles computation only for computer graphics, to perform computation in applications traditionally handled by the central processing unit (CPU).
Iterative design has long been used in engineering fields. One example is the plan–do–check–act cycle implemented in the 1960s. Most New product development or existing product improvement programs have a checking loop which is used for iterative purposes. DMAIC uses the Six Sigma framework and has such a checking function.
A graphics processing unit (GPU) is a specialized electronic circuit initially designed for digital image processing and to accelerate computer graphics, being present either as a discrete video card or embedded on motherboards, mobile phones, personal computers, workstations, and game consoles.
The SIMT execution model has been implemented on several GPUs and is relevant for general-purpose computing on graphics processing units (GPGPU), e.g. some supercomputers combine CPUs with GPUs. The processors, say a number p of them, seem to execute many more than p tasks.
Visual computing [1] is a fairly new term, which got its current meaning around 2005, when the International Symposium on Visual Computing first convened. [2] Areas of computer technology concerning images, such as image formats, filtering methods, color models, and image metrics, have in common many mathematical methods and algorithms.
In computer graphics, the render output unit (ROP) or raster operations pipeline is a hardware component in modern graphics processing units (GPUs) and one of the final steps in the rendering process of modern graphics cards.
The value is denoted by the symbol ε. To perform the test a number, n, statistically independent runs of the model are conducted and a mean or expected value, E(Y) or μ for simulation output variable of interest Y, with a standard deviation S is produced. A confidence level is selected, 100(1-α). An interval, [a,b], is constructed by
The goal of computer graphics is to generate computer-generated images, or frames, using certain desired metrics. One such metric is the number of frames generated in a given second. Real-time computer graphics systems differ from traditional (i.e., non-real-time) rendering systems in that non-real-time graphics typically rely on ray tracing.