enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    The x-coordinates of the red circles are stationary points; the blue squares are inflection points. In mathematics, a critical point is the argument of a function where the function derivative is zero (or undefined, as specified below). The value of the function at a critical point is a critical value. [1]

  3. Cubic function - Wikipedia

    en.wikipedia.org/wiki/Cubic_function

    If b 2 – 3ac = 0, then there is only one critical point, which is an inflection point. If b 2 – 3ac < 0, then there are no (real) critical points. In the two latter cases, that is, if b 2 – 3ac is nonpositive, the cubic function is strictly monotonic. See the figure for an example of the case Δ 0 > 0.

  4. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    After establishing the critical points of a function, the second-derivative test uses the value of the second derivative at those points to determine whether such points are a local maximum or a local minimum. [1] If the function f is twice-differentiable at a critical point x (i.e. a point where f ′ (x) = 0), then:

  5. Stationary point - Wikipedia

    en.wikipedia.org/wiki/Stationary_point

    A simple example of a point of inflection is the function f(x) = x 3. There is a clear change of concavity about the point x = 0, and we can prove this by means of calculus. The second derivative of f is the everywhere-continuous 6x, and at x = 0, f″ = 0, and the sign changes about this point. So x = 0 is a point of inflection.

  6. Inflection point - Wikipedia

    en.wikipedia.org/wiki/Inflection_point

    A rising point of inflection is a point where the derivative is positive on both sides of the point; in other words, it is an inflection point near which the function is increasing. For a smooth curve given by parametric equations , a point is an inflection point if its signed curvature changes from plus to minus or from minus to plus, i.e ...

  7. Saddle point - Wikipedia

    en.wikipedia.org/wiki/Saddle_point

    A saddle point (in red) on the graph of z = x 2 − y 2 (hyperbolic paraboloid). In mathematics, a saddle point or minimax point [1] is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. [2]

  8. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    With one real and two complex roots, the three roots can be represented as points in the complex plane, as can the two roots of the cubic's derivative. There is an interesting geometrical relationship among all these roots. The points in the complex plane representing the three roots serve as the vertices of an isosceles triangle.

  9. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.